Инструментальные материалы. Основные свойства инструментальных материалов Физико механические свойства инструментальных материалов

Инструментальные материалы. Основные свойства инструментальных материалов Физико механические свойства инструментальных материалов

Износ металлорежущего инструмента увеличивает погрешность на размер, влияет на качество обрабатываемой поверхности, увеличивает силы резания приводит к искажению поверхностного слоя детали.Износ и технологический период стойкости инструмента можно уменьшить за счет применения прогрессивных материалов и сборных инструментов оснащенных сменными многогранными пластинами.

Процесс резания сопровождается большим давлением на режущий инструмент, трением и тепловыделением. Такие условия работы выдвигают ряд требований, которым должны удовлетворять материалы, предназначенные для изготовления режущего инструмента.

Инструментальные материалы должны иметь высокую твердость, превышающую твердость обрабатываемого материала. Высокая твердость материала режущей части может быть обеспечена физико-механическими свойствами материала (алмазы, карбиды кремния, карбиды вольфрама и др.) или

его термической обработкой (закалка и отпуск).

В процессе резания срезаемый слой давит на переднюю поверхность инструмента, создавая в пределах площади контакта нормальное напряжение. При резании конструкционных материалов с установленными режимами резания нормальные контактные напряжения могут достигать значительных величин. Режущий инструмент должен выдерживать такие давления без хрупкого разрушения и пластического деформирования. Так как режущий инструмент может работать в условиях переменных значений сил, например из-за неравномерно снимаемого слоя металла заготовки, важно, чтобы инструментальный материал сочетал в себе высокую твердость с сопротивляемостью на сжатие и изгиб, обладал высоким пределом выносливости и ударной вязкостью. Таким образом, инструментальный материал должен отличаться высокой механической прочностью.

При резании со стороны заготовки на инструмент действует мощный тепловой поток, в результате чего на передней поверхности инструмента устанавливается высокая температура. При этом режущие элементы инструмента теряют свою твердость и изнашиваются из-за интенсивного разогревания. Поэтому важнейшим требованием, предъявляемым к инструментальному материалу, является его высокая теплостойкость – способность сохранять при нагреве твердость, необходимую для осуществления процесса резания.

Перемещение стружки по передней и задней поверхностям резания инструмента при высоких контактных напряжениях и температурах приводят к изнашиванию рабочих поверхностей. Таким образом, высокая износостойкость – важнейшее требование, предъявляемое к характеристике инструментального материала. Износостойкость – это способность инструментального материала сопротивляться при резании удалению его частиц с контактных поверхностей инструмента. Она зависит от твердости, прочности и теплостойкости инструментального материала.

Инструментальный материал должен обладать высокой теплопроводностью. Чем она выше, тем меньше опасность возникновения шлифовочных ожогов и трещин.

В промышленности используется большое количество инструмента, что требует соответствующего расхода инструментального материала. Инструментальный материал должен быть по возможности дешевым, не содержать дефицитных элементов, что не будет увеличивать стоимость инструмента и, соответственно, стоимость изготовления деталей.

В соответствии с химическим составом и физико-механическими свойствами инструментальные материалы делят на :

углеродистые инструментальные стали;

легированные инструментальные стали;

быстрорежущие стали и сплавы (высоколегированные);

твердые сплавы;

минералокерамику;

абразивные материалы;

алмазные материалы.

Наиболее распространенными из углеродистых инструментальных материалов являются марки: У9А, У10А, У12А, У13А.

Маркировка углеродистых инструментальных сталей расшифровывается так: буква «У» означает, что сталь углеродистая; цифра указывает на содержание в ней углерода в десятых долях процента; буква «А» говорит о том, что сталь высококачественная.

Углеродистые стали из-за отсутствия легирующих химических элементов хорошо шлифуются и являются дешевым инструментальным материалом. Вместе с тем инструмент, изготовляемый из углеродистой стали, сравнительно быстро изнашивается и теряет твердость, полученную при закалке.

Из этих сталей изготовляют инструменты малых габаритных размеров для работы по мягким материалам с малой скоростью резания. Из сталей марок У7А, У7, У8А, У8, У8ГА, У9А и У9 производят различные слесарные и кузнечные инструменты, инструменты для обработки дерева, кожи и др. Из этих же марок сталей изготовляют державки и корпуса инструментов, оснащенных пластинками из твердого сплава.

Легированные инструментальные стали получаются путем добавления в углеродистые стали небольшого количества легирующих элементов: хрома (Х), вольфрама (В), ванадия (Ф), кремния (С), марганца (Г). Наибольшее применение при изготовлении инструментов нашли стали марок ХВ5, ХВГ, 9ХС.

Сталь ХВ5 после термообработки приобретает весьма высокую твердость (HRC 67…67), плохо прокаливается, но по прочности не уступает стали У12А, но из-за большой твердости обладает высоким сопротивлением малым пластическим деформациям. Для изготовленных из нее инструментов характерна высокая формоустойчивость лезвий. Эта сталь применяется для изготовления инструментов, работающих при небольших скоростях резания.

Сталь ХВГ после закалки и отпуска приобретает твердость HRC 63…65 и достаточно высокую вязкость, отличается малыми объемными изменениями при закалке, хорошо прокаливается, но имеет пониженное сопротивление малым пластическим деформациям. Инструмент, изготовленный из этой стали, мало деформируется и хорошо поддается правке.

Сталь 9ХС после термообработки приобретает твердость HRC 63…64. Она обладает хорошей закаливаемостью. Инструмент из этой стали малодеформируется. Сталь также малочувствительна к перегреву. Сталь 9ХС особо пригодна для изготовления инструментов с тонкими режущими элементами.

Высоколегированные инструментальные (быстрорежущие) стали и сплавы получаются при добавлении в углеродистую сталь большого количества легирующих элементов: вольфрама, ванадия, молибдена, хрома. Введением в сталь вольфрама, ванадия, молибдена и хрома в значительных количествах получают сложные карбиды, связывающие почти весь углерод, что обеспечивает возрастание теплостойкости быстрорежущей стали.

В отличие от углеродистых и легированных инструментальных сталей быстрорежущие стали обладают более высокими твердостью, прочностью, тепло- и износостойкостью, сопротивлением малым пластическим деформациям, хорошей прокаливаемостью. Благодаря высокой теплостойкости быстрорежущих сталей инструменты, изготовленные из этих сталей, работают со скоростями резания, в 2,5…3 раза более высокими, чем те, которые при равной стойкости допускают углеродистые инструменты. По уровню теплостойкости быстрорежущие стали разделяют на:

стали нормальной теплостойкости (Р18, Р9, Р12, Р6М3 и Р6М5);

стали повышенной теплостойкости, легированные ванадием (ванадиевые стали Р18Ф2, Р14Ф4, Р9Ф5) и кобальтом (кобальтовые стали Р9К5, Р9К10);

высоколегированные стали и сплавы высокой теплостойкости (быстрорежущие стали повышенной прочности) – безуглеродистые сплавы (Р18М3К25, Р18М7К25 и Р10М5К25), отличающиеся содержанием вольфрама и молибдена.

Кроме традиционных быстрорежущих сталей, получаемых плавкой, в последнее время освоено производство порошковых быстрорежущих сталей, имеющих более высокие режущие свойства за счет особой мелкозернистой структуры. Такие стали позволяют получить лезвия с очень малым начальным радиусом округления режущей кромки.

Широкое применение быстрорежущей стали при изготовлении самых разных инструментов объясняется ее хорошими режущими и технологическими свойствами. Из быстрорежущих сталей изготовляют различные режущие инструменты, в том числе и фрезы для обработки древесных и композиционных материалов. Ввиду высокой стоимости быстрорежущих сталей, их, в основном, применяют при изготовлении сборного инструмента в виде режущих пластин.

Твердые сплавы. Помимо сборного инструмента, с пластинами из быстрорежущих сталей широкое распространение получили конструкции фрез, оснащенных твердым сплавом. В отличие от углеродистых, легированных и быстрорежущих сталей, производимых методом выплавки в электроплавильных печах с последующей прокаткой, твердые сплавы получают металлокерамическим методом порошковой металлургии (спечением). Исходными материалами для изготовления твердых сплавов являются порошки карбидов тугоплавких металлов: вольфрама, титана, тантала и не образующего карбидов кобальта. Порошки смешивают в определенных пропорциях, прессуют в формах и спекают при температуре 1500…2000 0 С. При спекании твердые сплавы приобретают высокую твердость и в дополнительной термической обработке не нуждаются.

Карбиды вольфрама, титана и тантала обладают высокими тугоплавкостью и твердостью. Они образуют режущую основу сплава, а кобальт, по сравнению с карбидами вольфрама, титана и тантала, значительно мягче и прочнее, и поэтому в сплаве он является связкой, цементирующей режущую основу. Увеличение количества карбидов вольфрама, титана, тантала приводит к увеличению твердости и теплостойкости сплава и снижает его механическую прочность. При увеличении содержания кобальта твердость и теплостойкость сплава снижаются, но возрастает его прочность.

Промышленность выпускает четыре группы твердых сплавов:

вольфрамовые однокарбидные (ВК), спекаемые из карбида вольфрама и кобальта: ВК2, ВК3М, ВК4, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В;

вольфрамовые двухкарбидные (титановольфрамовые ТК), спекаемые из карбида вольфрама, карбида титана и кобальта: Т30К4, Т5К6, Т14К8, Т5К10, Т5К12В;

вольфрамовые трехкарбидные (титанотанталовольфрамовые ТТК), спекаемые из карбида титана, карбида тантала и карбида вольфрама и кобальта: ТТ7К12;

безвольфрамовые (ТНТ – КНТ), спекаемые из карбида титана (ТНТ), нитрида титана (КНТ), никеля и молибдена.

Различные физико-механические и режущие свойства инструментов определяются химическим составом марок твердых сплавов. Основные свойства твердых сплавов представлены в табл. 1. 2 .

Сплавы группы ВК используют для обработки хрупких материалов.

Таблица 1.2

Основные свойства твердых сплавов

Свойства

ВК

ТК

ТТК

ТНТ – КНТ

Плотность, кг/м 3

12900…

15300

10100…

13600

12000…

13800

5500…

9500

σ изг, МПа

1180…2450

1170…1770

12500…17000

400…1750

Микротвердость, МПа

8,8…16,2

11,3…21,6

13,9…14,4

~ 18

Температура эксплуатации, 0 С

~ 500

~ 900

~ 1000

~ 800

Сплавы группы ТК обладают высокими износо- и теплостойкостью, но более хрупкие, чем сплавы группы ВК. Основные свойства и химический состав некоторых сплавов группы ВК представлены в табл. 1. 3 .

Сплавы группы ТТК по применяемости универсальны и годятся для обработки многих конструкционных материалов. Сплавы отличаются меньшей хрупкостью, большей прочностью удержания карбидной фазы, лучшей сопротивляемостью высокотемпературной текучести и большим пределом прочности при циклическом характере нагружения, чем сплавы ТК и ВК. Поэтому, инструмент, оснащенный пластинами из ТТК, особенно эффективен в процессах прерывистого резания. В этих случаях повышенная прочность сплавов ТТК компенсирует их пониженную теплостойкость. Основные свойства и химический состав некоторых сплавов групп ТК и ТТК представлены в табл. 1. 4 .

Таблица 1.3

Основные свойства и химический состав некоторых сплавов группы ВК

Марка сплава

WC, %

TiC, %

TaC, %

Co, %

σ изг, МПа

HRA

σ сж, МПа

НВ

Свойства

ВК2

1100

15,2

416

Высокая износост.

ВК3

1100

16,2

ВК3М

ВК6

1450

14,8

460

Выше, чем у ВК2, ВК3М

ВК6М

1500

14,8

Зерна крупные, износост. ниже

ВК8

ВК10

1700

14,8

366

ВК25

2000

83,5

13,0

370

Важнейшими правилами при выборе марки твердого сплава в пределах каждой группы являются:

при тяжелых условиях работы инструмента в силовом отношении твердый сплав должен содержать достаточно большой процент кобальта;

чем легче силовой режим работы, тем больше в сплавах должно содержаться карбидов титана и вольфрама.

Для изготовления режущих инструментов твердые сплавы поставляют в виде пластинок определенной формы и размеров.

Твердые сплавы в форме пластинок соединяют с крепежной частью пайкой или с помощью специальных высокотемпературных клеев. Многогранные твердосплавные пластины закрепляют прихватами, винтами, клиньями и др.

Таблица 1.4

Основные свойства и химический состав некоторых сплавов групп ТК и ТТК

Марка сплава

WC , %

TiC , %

TaC , %

Co , %

σ изг, МПа

HRA

σ сж, МПа

Свойства

Т30К4

900

9,7

Высокая износост. сопротивл. ударным нагрузкам

Т15К6

1159

11,3

3900

Высокая износост.

Т5К10

1385

13,0

4000

Сопротивл. выше, чем у Т14К8

ТТ7К12

1600

13,0

Увелич. V р в 2 раза (по срав. с БРС

ТТ10К8Б

1400

13,6

Умеренная износост., высокая экспл. прочность

Мелкоразмерные твердосплавные инструменты изготовляют в виде припаиваемых к хвостовикам твердосплавных стержней и коронок или целиком из твердого сплава.

Наряду с вольфрамовыми твердыми сплавами существуют также сплавы, не содержащие карбида вольфрама, и называются безвольфрамовыми твердыми сплавами.

Причиной полной или частичной замены карбида вольфрама другими твердыми материалами послужил дефицит вольфрама в качестве сырья для получения металлокерамических твердых сплавов.

Полная замена карбида вольфрама может осуществляться тремя путями :

Применение других твердых материалов, например нитридов, боридов, силицидов, окислов или карбидов неметаллов (карбидов бора и кремния);

Замена карбида вольфрама другими тугоплавкими карбидами металлов (карбидами ниобия, циркония, гафния, ванадия и др.) или их бинарными или тройными твердыми сплавами;

Простое исключение карбида вольфрама из состава твердого сплава.

Безвольфрамовые твёрдые сплавы по сравнению с вольфрамовыми имеют меньшую прочность на изгиб, но обладают более высокой твёрдостью и низкой схватываемостью со сталями. Инструменты из этих сплавов работают по сталям практически без наростообразования, что и определяет область их применения (чистовое и получистовое точение и фрезерование малолегированных, углеродистых сталей, чугуна и цветных сплавов). Износостойкость в 1,2 - 1,5 раза выше, чем у сплавов группы ТК. Основные физико-механические свойства безвольфрамовых твердых сплавов представлены в табл. 1. 7 .

Таблица 1.5

Физико-механические свойства безвольфрамовых твердых сплавов

Марка твердого сплава

Плотность, г/см 3

σ изг, МПа

σ сж, МПа

Твердость, HRA

Модуль упругости·10 3 МПа

Величина зерна, мкм

ТМ3

5,9

1150

3600

410

ТН-20

5,5

1000

3500

89,5

400

1-2

ТП-50

6,2

1250

86,5

КНТ-16

5,8

1150

3900

440

1,2-1,8

МНТ-А2

5,5

1000

Недостатком является то, что безвольфрамовые твердые сплавы плохо поддаются пайке и заточке вследствие неудовлетворительных термических свойств и поэтому применяются в основном в виде неперетачиваемых пластин.

Материалом для изготовления инструментов может служить также минералокерамика, представляющая собой кристаллический оксид алюминия (Al 2 O 3 ). Широкое распространение получила минеральная керамика марки ЦМ-332.

В результате спекания минералокерамика становится поликристаллическим телом, которое состоит из мельчайших кристаллов корунда и межкристаллитной прослойки в виде аморфной стекловидной массы. Минералокерамика является дешевым и доступным инструментальным материалом, так как не содержит дефицитных и дорогих элементов, являющихся основой инструментальных сталей и твердых сплавов.

Кроме того, минералокерамика обладает высокой твердостью и исключительно высокой теплостойкостью. По теплостойкости минеральная керамика превосходит все распространенные инструментальные материалы, что позволяет минералокерамическому инструменту работать со скоростями резания, значительно превышающими скорости резания твердосплавных инструментов, и что является основным достоинством минеральной керамики.

Вместе с указанными достоинствами минералокерамики она имеет недостатки, ограничивающие ее применение: пониженную прочность на изгиб, низкую ударную вязкость, исключительно низкую сопротивляемость циклическому изменению тепловой нагрузки. В результате этого при прерывистом резании на контактных поверхностях инструмента возникают температурные усталостные трещины, являющиеся причиной преждевременного выхода инструмента из строя.

Низкая прочность на изгиб и высокая хрупкость минеральной керамики позволяют использовать ее лишь в инструментах для обработки конструкционных материалов на чистовых операциях с непрерывным точением и с малыми сечениями срезаемого слоя при отсутствии толчков и ударов.

Режущий инструмент оснащается пластинками из минералокерамики определенных форм и размеров. Пластинки крепятся к корпусу инструментов припаиванием, приклеиванием и механическим путем.

Все шире в деревообработке применяют алмазные и сверхтвердые материалы, которые можно разделить на три разновидности:

природные и синтетические алмазы в виде моно- и поликристаллов;

кубический нитрид бора, в виде моно- и поликристаллов;

синтетические поликристаллические композиционные материалы (композиты), получаемые путем синтеза или спекания.

Природные алмазы представляют собой особую группу материалов для оснащения режущих инструментов.

Разновидностями алмаза являются: баллас, карбонадо, борт. Полезным свойством алмазов является, в первую очередь, исключительно высокая их твердость. Высокая теплопроводность, намного превышающая теплопровод-

ность всех известных инструментальных материалов, и малый коэффициент линейного расширения алмаза позволяют проводить алмазным инструментом точную размерную обработку. Низкий коэффициент трения об обрабатываемый материал и малая склонность к адгезии обеспечивают при резании алмазными инструментами малую шероховатость поверхности.

В промышленности используют как природные (марки А), так и синтетические алмазы (марок АСО, АСР, АСВ и др.). Синтетические алмазы получают из графита и углеродистых веществ. Разновидности природного алмаза: борт и карбонадо – используют только в промышленности.

К синтетическим сверхтвердым материалом того же назначения, что и алмаз, относят кубический нитрид бора (эльбор). Он образуется в результате химического соединения бора и азота. Твердость эльбора ниже, чем алмаза, однако по теплостойкости кубический нитрид бора превосходит алмаз, но по теплопроводности примерно в 3 раза ниже его. Производство крупных поликристаллических образований кубического нитрида бора диаметром 3…4 и длиной 5…6 мм, обладающих высокой прочностью, позволяет оснащать им режущий инструмент.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость в состоянии поставки или достигаемую в результате его термической обработки – не менее 63…66 HRC по Роквеллу.

2. Необходимо, чтобы при значительных температурах резания твердость поверхностей инструментов существенно не уменьшалась. Способность материала сохранять высокую твердость при повышенных температурах и исходную твердость после охлаждения называется теплостойкостью. Инструментальный материал должен обладать высокой теплостойкостью.

3. Наряду с теплостойкостью, инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом.

4. Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента сопровождается значительной хрупкостью, это приводит к поломке инструмента и выкрашиванию режущих кромок.

5. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей – это хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки; хорошая шлифуемость после термической обработки. Для твердых сплавов особое значение приобретает хорошая шлифуемость, а также отсутствие трещин и других дефектов, возникающих в твердом сплаве после припайки пластин, при шлифовании и заточке инструмента.

ВИДЫ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ И ОБЛАСТИ ИХ ПРИМЕНЕНИЯ.

Ранее всех материалов начали применять углеродистые инструментальные стали марок У7, У7А … У13, У 13А. Кроме железа они содержат 0,2…0,4 % марганца, обладают достаточной твердостью при комнатной температуре, но их теплостойкость невелика, так как при сравнительно невысоких температурах (200…250°С) их твердость резко уменьшается.

Легированные инструментальные стали по своему химическому составу отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного или нескольких легирующих элементов: хрома (увеличивает твердость, прочность, коррозионную стойкость материала, понижает его пластичность); никеля (повышает прочность, пластичность, ударную вязкость, прокаливаемость материала); вольфрама (повышает твердость и теплостойкость материала); ванадия (повышает твердость и прочность материала, способствует образованию мелкозернистой структуры); кобальта (увеличивает ударную вязкость и жаропрочность материала); молибдена (повышает упругость, прочность, теплостойкость материала). Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами – лучшей закаливаемостью и прокаливаемостью, меньшей склонностью к короблению, но теплостойкость их практически равна теплостойкости углеродистых сталей 350…400°С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, развертки).

Быстрорежущие инструментальные стали. Из группы высоколегированных сталей для изготовления режущих инструментов используются быстрорежущие стали с высоким содержанием вольфрама, молибдена, кобальта, ванадия. Современные быстрорежущие стали можно разделить на три группы.

К сталям нормальной теплостойкости относятся вольфрамовые Р18, Р12, Р9 и вольфрамомолибденовые Р6М5, Р6М3, Р8М3. Эти стали имеют твердость в закаленном состоянии 63…66HRC, предел прочности при изгибе 2900…3400Мпа, ударную вязкость 2,.7…4,8 Дж/м 2 и теплостойкость 600…650°С. Они используются при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс. Иногда применяются быстрорежущие стали, дополнительно легированные азотом (Р6АМ5, Р18А и др.), которые являются модификациями обычных быстрорежущих сталей. Легирование азотом повышает режущие свойства инструмента на 20…30%, твердость – на 1 – 2 единицы HRC.

Стали повышенной теплостойкости характеризуются повышенным содержанием углерода – 10Р8М3, 10Р6М5; ванадия – Р12Ф3, Р2М3Ф8; Р9Ф5; кобальта – Р18Ф2К5, Р6М5К5, Р9К5, Р9К10, Р9М4К8Ф, 10Р6М5Ф2К8 и др.

Твердость сталей в закаленном состоянии достигает 66…70HRC, они имеют более высокую теплостойкость (до 620…670°С). Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышенной прочности и закаленных. Период стойкости инструментов из таких сталей в 3 – 5 раз выше, чем из сталей Р18, Р6М5.

Стали высокой теплостойкости характеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов – В11М7К23, В14М7К25, 3В20К20Х4Ф. Они имеют твердость 69…70HRC, и теплостойкость 700…720°С. Наиболее рациональная область их использования – резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 30 – 80 раз выше, чем из стали Р18, и в 8 – 15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3 – 8 раз).

Твердые сплавы. Эти сплавы получают методами порошковой металлургии в виде пластин или коронок. Основными компонентами таких сплавов являются карбиды вольфрама WC, титана TiC, тантала TaC и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких кобальта или никеля в смеси с молибденом.

Твердые сплавы имеют высокую твердость – 88…92 HRA (72…76 HRC) и теплостойкость до 850…1000°С. Это позволяет работать со скоростями резания в 3 – 4 раза большими, чем инструментами из быстрорежущих сталей.

Применяемые в настоящее время твердые сплавы делятся:

1) на вольфрамовые сплавы группы ВК: ВК3, ВК3-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозначении цифра показывает процентное содержание кобальта. Например, обозначение ВК8 показывает, что в нем 8% кобальта и 92% карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелкозернистая структура;

2) на титановольфрамовые сплавы группы ТК: Т5К10, Т15К6, Т14К8, Т30К4, Т60К6 и др. В условном обозначении цифра, стоящая после буквы Т, показывает процентное содержание карбидов титана, после буквы К – кобальта, остальное – карбиды вольфрама;

3) на титанотанталовольфрамовые сплавы группы ТТК: ТТ7К12, ТТ8К6, ТТ20К9и др. В условном обозначении цифры, стоящие после буквы Т, показывают процентное содержание карбидов титана и тантала, после буквы К – кобальта, остальное – карбиды вольфрама;

4) на безвольфрамовые твердые сплавы ТМ-1, ТМ-3, ТН-20, КНТ-16, ТС20ХН. Обозначения условные.

Твердые сплавы выпускаются в виде стандартизованных пластин, которые припаиваются, приклеиваются или крепятся механически к державкам из конструкционной стали. Выпускаются также инструменты, рабочая часть которых целиком выполнена из твердого сплава (монолитные).

Сплавы группы ТК имеют более высокую теплостойкость, чем сплавы ВК. Они могут использоваться при высоких скоростях резания, поэтому их широко применяют при обработке сталей.

Инструменты из твердых сплавов группы ВК применяют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при прерывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обусловлено повышенной прочностью этой группы твердых сплавов и не высокими температурами в зоне резания. Их также используют при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Введение в твердый сплав карбидов тантала или карбидов тантала и ниобия (ТТ10К8-Б) повышает его прочность. Однако температура теплостойкости этих сплавов ниже, чем у двух карбидных.

Особомелкозернистые твердые сплавы применяют для обработки материалов с большой истирающей способностью. Их применяют для чистовой и получистовой обработки деталей из высокопрочных вязких сталей с повышенной склонностью к наклепу.

Сплавы с низким содержанием кобальта (Т30К4, ВК3, ВК4) применяют на чистовых операциях, с большим содержанием кобальта (ВК8, Т14К8, Т5К10) используют на черновых операциях.

Минералокерамика. Ее основу составляют оксиды алюминия Al 2 О 3 с небольшой добавкой (0,5…1%) оксида магния MgO. Высокая твердость, теплостойкость до 1200°С, химическая инертность к металлам, сопротивление окислению во многом превосходят эти же параметры твердых сплавов, но уступает по теплопроводности и имеет более низкий предел прочности на изгиб.

Высокие режущие свойства минералокерамики проявляются при скоростной обработке сталей и высокопрочных чугунов, причем чистовое и получистовое точение и фрезерование повышает производительность обработки деталей до 2 раз при одновременном возрастании периодов стойкости инструментов до 5 раз по сравнению с обработкой инструментами из твердого сплава. Минералокерамика выпускается в виде неперетачиваемых пластин, что существенно облегчает условия ее эксплуатации.

Сверхтвердые инструментальные материалы (СТМ) – наиболее перспективные – это синтетические сверхтвердые материалы на основе алмаза или нитрида бора.

Для алмазов характерны высокая твердость и износостойкость. По абсолютной твердости алмаз в 4-5 раз тверже твердых сплавов и в десятки и в сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, однако, из-за их хрупкости область их применения сильно ограничена. Существенный недостаток алмаза – при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность.

Поэтому были созданы новые сверхтвердые материалы, химически инертные к алмазу. Технология получения их близка к технологии получения алмазов, но в качестве исходного вещества использовался не графит, а нитрид бора.

НАЗНАЧЕНИЕ ГЕОМЕТРИИ ИНСТРУМЕНТА И ОПТИМАЛЬНЫХ РЕЖИМОВ РЕЗАНИЯ ПРИ ТОЧЕНИИ, СВЕРЛЕНИИ, ФРЕЗЕРОВАНИИ.

Выбор заднего угла a. Известно, что при обработке сталей больший оптимальный угол a соответствует меньшей толщине срезаемого слоя: sin a опт =0,13/а 0,3 .

Для практических целей при обработке сталей рекомендуются следующие значения задних углов: для черновых резцов при S>0,3мм/об - a=8°; для чистовых резцов при S<0,3 мм/об - a=12°; для торцовых и цилиндрических фрез - a=12…15°.

Значение задних углов при обработке чугунов несколько меньше, чем для обработки сталей.

Выбор переднего угла g. Передний угол должен быть тем больше, чем меньше твердость и прочность обрабатываемого материала и чем больше его пластичность. Для инструментов из быстрорежущей стали при обработке мягких сталей угол g=20…30°, сталей средней твердости - g=12…15°, чугуна - g=5…15° и алюминия - g=30…40°. У твердосплавного инструмента передний угол делается меньшим, а иногда даже отрицательным в силу того, что этот инструментальный материал менее прочный, чем быстрорежущая сталь. Однако уменьшение g приводит к росту сил резания. Для снижения сил резания в таком случае на передней поверхности как твердосплавного, так и быстрорежущего инструмента затачивают отрицательную фаску.

Выбор главного угла в плане j. При обработке нежестких деталей для уменьшения радиальной составляющей Р у главный угол в плане следует увеличивать до j=90°. В отдельных случаях угол j назначают из конструктивных соображений. Главный угол в плане влияет также на шероховатость обработанной поверхности, поэтому при чистовой обработке рекомендуется использовать меньшие значения j.

Выбор вспомогательного угла в плане j 1 . Для отдельных видов инструментов j 1 колеблется в пределах от 0 до 2…3°. Например, у сверл и метчиков j 1 =2…3¢, а у отрезного резца j 1 =1…3°.

Выбор угла наклона главной режущей кромки l. Рекомендуемые углы для чистовых и черновых резцов из быстрорежущей стали соответственно l=0…(-4)° и l=5…+10°, для твердосплавных резцов при работе их без ударов и с ударами соответственно l=5…+10° и l=5…+20°.

Назначение оптимальных режимов резания :

1. Прежде всего, выбирают инструментальный материал , конструкцию инструмента и геометрические параметры его режущей части. Материал режущей части выбирают в зависимости от свойств обрабатываемого материала, состояния поверхности заготовки, а также от условий осуществляемого резания. Геометрические параметры инструмента назначаются в зависимости от свойств обрабатываемого материала, жесткости технологической системы, вида обработки (черновой, чистовой или отделочной) и других условий резания.

2. Назначают глубину резания с учетом припуска на обработку. При черновой обработке желательно назначать глубину резания, обеспечивающую срезание припуска за один проход. Количество проходов свыше одного при черновой обработке следует допускать в исключительных случаях при снятии повышенных припусков. Получистовая обработка часто производится в два прохода. Первый, черновой, осуществляется с глубиной резания t=(0,6…0,75)h, а второй, окончательный с t=(0,3…0,25)h. Обработка в два прохода в этом случае вызвана тем, что при снятии слоя толщиной свыше 2мм за один проход качество обработанной поверхности низкое, а точность ее размеров недостаточна. При чистовой обработке в зависимости от точности и шероховатости обработанной поверхности глубину резания назначают в пределах 0,5…2,0мм на диаметр, а при обработке с шероховатостью менее Ra 1,25 – в пределах 0,1…0,4мм.

3. Выбирают подачу (при точении и сверлении – S 0 , мм/об; при фрезеровании S z , мм/зуб).При черновой обработке она устанавливается с учетом жесткости технологической станочной системы, прочности детали, способа ее крепления (в патроне, в центрах и т.д.), прочности и жесткости рабочей части режущего инструмента, прочности механизма подачи станка, а также установленной глубины резания. При чистовой обработке назначение подачи необходимо согласовывать с заданной шероховатостью обработанной поверхности и квалитетом точности, учитывая при этом возможный прогиб детали под действием сил резания и погрешности геометрической формы обработанной поверхности. После выбора нормативной подачи производят проверочные расчеты по формулам: Р х = , или .

4. Определяют скорость резания. Скорость резания, допускаемая режущим инструментом при определенном периоде его стойкости, зависит от глубины резания и подачи, материала режущей части инструмента и его геометрических параметров, от обрабатываемого материала, вида обработки, охлаждения и других и других факторов.

При данных глубине резания, подаче и периоде стойкости можно рассчитать скорость резания: при точении: ; при сверлении: ; при фрезеровании: .

5. При черновой обработке проверяется выбранный режим резания по мощности станка. В этом случае должно соблюдаться соотношение: N рез £1,3hN ст. Если окажется, что мощности электродвигателя станка, на котором производится обработка, не хватает, надо выбрать более мощный станок. Если это невозможно, необходимо уменьшить выбранные значения u или S.

6. Определяют основное время каждого прохода (формулы для его расчета при различных видах обработки приводятся в нормативно-справочной литературе.

ПРОЦЕСС ШЛИФОВАНИЯ

Шлифование – процесс резания металлов, осуществляемый зернами абразивного материала. Шлифованием можно практически обрабатывать любые материалы, так как твердость зерен абразива (2200…3100НВ) и алмаза (7000НВ) очень велика. Для сравнения отметим, что твердость твердого сплава 1300НВ, цементита 2000НВ, закаленной стали 600…700НВ. Зерна абразива скрепляются связкой в инструменты различной формы или наносятся на ткань (абразивные шкурки). Шлифование применяется чаще всего как отделочная операция и позволяет получать детали 7…9-го и даже 6-го квалитетов с шероховатостью Ra=0,63…0,16мкм и менее. В некоторых случаях шлифование применяется при обдирке отливок и поковок, при зачистке сварных швов, т.е. как подготовительная или черновая операция. В настоящее время применяется глубинное шлифование для съема больших припусков.

Характерными особенностями процесса шлифования являются следующие:

1) многопроходность, способствующая эффективному исправлению погрешностей формы и размеров деталей, полученных после предшествующей обработки;

2) резание осуществляется большим количеством беспорядочно расположенных абразивных зерен, обладающих высокой микротвердостью (22000…31000Мпа). Эти зерна, образующие прерывистый режущий контур, прорезают мельчайшие углубления, а объем металла, срезаемый в единицу времени, в этом случае значительно меньше, чем при резании металлическим инструментом. Одним абразивным зерном в единицу времени срезается примерно в 400000 раз меньший объем металла, чем одним зубом фрезы;

3) процесс срезания стружки отдельным абразивным зерном осуществляется на высоких скоростях резания (30…70м/с) и за очень короткий промежуток времени (в течение тысячных и стотысячных долей секунды);



абразивные зерна расположены в теле круга хаотически. Они являются многогранниками неправильной формы и имеют округленные радиусом r вершины (Стр. 301).

Округление это невелико (обычно r=8…20 мкм), но его всегда надо учитывать, так как при микрорезании толщины слоев, снимаемых отдельными зернами, соизмеримы с r;

5) большие скорости резания и неблагоприятная геометрия режущих зерен способствует развитию в зоне резания высоких температур (1000…1500°С);

6) управлять процессом шлифования можно только за счет изменения режимов резания, так как изменение геометрии абразивного зерна, выполняющего роль резца или зуба фрезы, практически трудноосуществимо. Алмазные круги с помощью специальной технологии изготовления могут иметь преимущественную (требуемую) ориентировку алмазных зерен в теле круга, что обеспечивает более благоприятные условия резания;

7) абразивный инструмент может в процессе работы самозатачиваться. Это происходит, когда режущие грани зерен затупляются, что вызывает увеличение сил резания, а следовательно, и сил, действующих на зерно. В результате затупленные зерна выпадают, вырываются из связки или раскалываются, и в работу вступают новые острые зерна;

8) шлифованная поверхность образуется в результате одновременного действия как геометрических факторов, характерных для процесса резания, так и пластических деформаций, сопровождающих этот процесс.

Что касается геометрической схемы образования шлифованной поверхности, необходимо иметь в виду следующее:



для большего соответствия действительному процессу стружкообразования следует рассматривать врезание зерен в шероховатую поверхность, а сами зерна считать хаотично расположенными во всем объеме круга (Стр. 302).

Шлифование должно рассматриваться как явление пространственное, а не плоскостное. В зоне резания обрабатываемая элементарная поверхность за время ее контакта со шлифовальным кругом соприкасается не с одним рядом зерен, а с несколькими;

2) чем меньше неровности абразивного режущего инструмента, тем ближе он подходит к сплошному режущему лезвию и тем менее шероховатой получается обработанная поверхность. Одинаковый режущий контур можно создать уменьшением номера зернистости или увеличением времени абразивного воздействия, например, за счет понижения скорости вращения детали или уменьшения продольной подачи за один оборот изделия;

3) упорядоченный режущий рельеф достигается алмазной правкой. В процессе шлифования по мере разрушения и выпадания отдельных зерен упорядоченный режущий рельеф нарушается;

4) абразивные зерна в процессе резания можно разделить на режущие (например, зерна 3, 7), скоблящие, если они врезаются на столь малую глубину, что происходит лишь пластическое выдавливание металла без снятия стружки, давящие 5 и нережущие 4. В реальном процессе шлифования примерно 85…90% всех зерен не режет, а так или иначе пластически деформирует тончайший поверхностный слой, т.е. наклепывает его.

5) на шероховатость влияет не только зернистость, но и связка абразивного инструмента, оказывающая полирующий эффект, который больше проявляется при меньших скоростях вращения круга.

ХАРАКТЕРИСТИКИ АБРАЗИВНОГО ИНСТРУМЕНТА И НАЗНАЧЕНИЕ РЕЖИМОВ ШЛИФОВАНИЯ

Все абразивные материалы делятся на две группы: естественные и искусственные. К естественным материалам относятся корунд и наждак, состоящие из Al 2 O 3 и примесей. Из искусственных абразивных материалов наиболее широкое распространение получили: электрокорунд, карбид кремния, карбид бора, синтетический алмаз, кубический нитрид бора (КНБ), белбор.

Под зернистостью абразивных материалов понимают размеры их зерен. По своим размерам (крупности) они делятся по номерам:

1) 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16 – шлифзерно;

2) 12, 10, 8, 6, 5, 4, 3 – шлифпорошки;

3) М63, М50, М40, М28, М20, М14 – микропорошки;

4) М10, М7, М5 – тонкие микропорошки.

Зернистость микропорошков определяется размером зерен основной фракции в мкм. Согласно ГОСТ 3647-80, различают следующие фракции зерна: В (60…55%), П (55…45%), Н (45…40%), Д (43…39% зерен основной фракции).

Под твердостью кругов понимается способность связки удерживать абразивные зерна от вырывания их с поверхности круга под действием внешних сил, или степень сопротивления связки вырыванию зерен круга из материала связки.

По твердости круги на керамической и бакелитовой связках, согласно ГОСТ 18118-79, делятся на семь классов: М – мягкие (М1, М2, М3), М2 тверже, чем М1; СМ – среднемягкие (СМ1, СМ2); С – средние (С1, С2); СТ – среднетвердые (СТ1, СТ2, СТ3); Т – твердые (Т1, Т2); ВТ – весьма твердые (ВТ); ЧТ – чрезвычайно твердые (ЧТ).

Круги на вулканитовой связке различаются по твердости: среднемягкая (СМ), средняя (С), среднетвердая (СТ) и твердая (Т).

ГОСТ 2424-83 предусматривает изготовление шлифовальных кругов трех классов точности: АА, А и Б. В зависимости от класса точности кругов должны применяться шлифовальные материалы со следующими индексами: В и П – для класса точности АА; В, П и Н – для класса точности А; В, П, Н и Д – для класса точности Б.

Под структурой шлифовального круга понимается его внутренне строение, т. е. процентное соотношение и относительное расположение зерен, связки и пор в единице объема круга: V з +V с +V п =100%.

Основой системы структур является содержание абразивных зерен в единице объема инструмента:

Номер структуры
Содержание зерен, %

Структуры с 1 по 4 – закрытые или плотные; с 5 по 8 – средние; с 9 по 12 – открытые.

ГОСТ 2424-83 регламентирует выпуск 14 профилей шлифовальных кругов диаметром 3…1600мм, толщиной 6…250мм.

Оптимальным режимом резания при шлифовании следует считать режим, который обеспечивает высокую производительность, наименьшую себестоимость и получение требуемого качества шлифованной поверхности.

Для определения режима шлифования:

1) выбирается характеристика шлифовального круга и устанавливается его окружная скорость u к;

2) назначается поперечная подача (глубина резания t) и определяется число проходов, обеспечивающих снятие всего припуска. Подача варьируется в пределах 0,005…0,09 мм за двойной ход;

3) назначается продольная подача в долях ширины круга S пр =КВ, где К=0,4…0,6 для чернового, К=0,3…0,4 – для чистового шлифования;

4) выбирается окружная скорость вращения детали u д. При черновом шлифовании следует исходить из установленного периода стойкости круга (Т=25…60мин), при чистовом – из обеспечения заданной шероховатости поверхности. Обычно скорость вращения детали находится в пределах 40…80м/мин;

5) подбирается охлаждающая жидкость;

6) определяются силы резания и мощность, необходимые для обеспечения процесса шлифования. Мощность (кВт),необходимая для вращения круга, N k ³P z u к /10 3 h, а для вращения детали N д ³P z u д /(60×10 3 h);

7) выбранные режимы шлифования корректируются по паспорту станка. При нехватке мощности уменьшаются u д или S, т.к. они влияют на мощность резания N к и машинное время t м;

8) проверяются условия бесприжогового шлифования по удельной мощности, приходящейся на 1 мм ширины круга: N уд =N к /В. Она должна быть меньше допустимой удельной мощности, приводимой в справочной литературе;

9) подсчитывается машинное время.


Похожая информация.


Режущий клин при взаимодействии с материалом заготовки, осуществляя непрерывное деформирование и отделение материала, подвергается силовому и тепловому воздействию, а также истиранию. Эти условия работы позволяют сформулировать основные требования к материалу режущей части инструмента. Пригодность таких материалов определяется их твердостью, теплостойкостью, механической прочностью, износостойкостью, технологичностью и стоимостью.

1. Твердость. Внедрение одного материала (клина) в другой (заготовку) возможно лишь при преобладающей твердости материала клина, поэтому твердость инструментальных материалов, как правило, выше твердости обрабатываемых материалов. Однако при повышении температуры инструментального материала его твердость уменьшается и может оказаться недостаточной для осуществления деформирования и разделения материала. Свойства материалов сохранять необходимую твердость при высокой температуре называют теплостойкостью.

2. Теплостойкость. Она определяется критической температурой, при которой происходит изменение твердости. Если температура выше критической, инструмент работать не будет. В общем случае теплостойкость определяет новую скорость резания.

3. Механическая прочность. Важность механической прочности для инструментального материала объясняется его условиями работы, которые характеризуются нагрузками изгибающими, сжимающими и ударными, а следовательно пределы прочности материала на изгиб, сжатие и ударная вязкость являются основными показателями прочности инструментального материала.

4. Износостойкость. Способность материала противостоять изнашиванию определяет длительность работы материала инструмента. Износостойкость характеризуется работой силы трения отнесенной к величине стертой массы материала. Важность этой характеристики в том, что она определяет сохранение начальной геометрии инструмента во времени, т.к. в процессе работы происходит постоянное истирание инструмента (поверхности клина).



5. Технологичность. Технологичность материала - способность его соответствовать требованиям технологии термообработки, обработки давлением, механической обработки и т.д., является свойством, определяющим возможность изготовления инструмента, заданной конструкции.

6. Стоимость. Материал режущих инструментов не должен отличаться высокой стоимостью, т.к. это, в конечном счете, определяет ширину его использования.

════════════════════════════════════

Группы инструментальных материалов,
применяемые для изготовления режущего инструмента

1. Инструментальные стали

У7, У7А, У13,У13А

Углеродистые стали используются для изготовления инструмента, который работает при низких скоростях резания 15-18 м/мин, а также при температуре не ниже 200-230 о С. Это слесарный инструмент (зубило, напильники, метчики, плашки и т.д.). Твердость углеродистых сталей после термообработки достигает HRC 62-64.

2. Легированные стали

Для повышения технических или иных свойств углеродистых сталей в них вводят легирующие элементы. Так, к примеру:

· (Ni) Никель (H) - повышает пластичность и вязкость, увеличивает прокаливаемость

· (Mn) Марганец (Г) - увеличивает прочность, прокаливаемость, износостойкость

· (Cr) Хром (Х) - упрочняет сталь

· (W) Вольфрам (В) - повышает твердость, износостойкость, теплостойкость

· (V) Ванадий (Ф) ограничивает изменение свойств при нагреве, улучшает качество поверхности и свариваемость, но ухудшает шлифуемость.

· (Mo) Молибден (М) повышает прокаливаемость, прочность, пластичность, вязкость

· (Si) Кремний (С) повышает прокаливаемость.

Теплостойкость легированной стали не больше 300-350 о С. Низколегированные стали (Х) с хромом применяют для изготовления слесарного инструмента. Высоко легированные стали ХВГ, ХСВГ для фасонных резцов, сверл малого диаметра, протяжек, разверток и других инструментов, работающих при скоростях резания до 25 м/мин.

3. Быстрорежущие стали

Особую группу инструментальных сталей составляют быстрорежущие стали с содержанием вольфрама от 6-18% с высокой теплостойкостью (до 650 о С). Они пригодны для изготовления инструмента, работающего при скорости резания до 60 м/мин.

Из быстрорежущей стали нормальной производительности Р9, Р18 изготавливают сверла, метчики, фрезы, зенкеры, развертки, плашки и т.д., а из сталей повышенной производительности Р18Ф2, Р18Ф5, Р10К5Ф5 или Р9Ф5 делают инструмент для обработки высокопрочных и трудно обрабатываемых материалов, так как эти виды стали обладают повышенной износостойкостью и позволяют работать на скоростях до 100 м/мин.

В виду дефицитности вольфрама, как правило, из инструментального материала делают только режущую часть (пластинки, привариваемые к державкам), а корпусную - из обычной конструкционной стали. После термообработки твердость быстрорежущей стали достигает HRC 64 и больше.

4. Металлокерамические твердые сплавы

Эти материалы представляют собой сплавы карбидов тугоплавких металлов с чистым металлическим кобальтом, выступающим в качестве связки (TiC, TaC, WC).

Твердые сплавы получают прессованием с последующим спеканием отформованного материала. Их применяют в виде пластинок, получаемых спеканием при 1500 о -1900 о. Такой материал имеет теплостойкость 800 о -1000 о, что позволяет вести обработку при скорости 800 м/мин. В промышленности применяют многогранные пластинки (3, 4, 6). Недостатком является то, что материал плохо выдерживает ударные нагрузки из-за хрупкости (чем больше в составе кобальта, тем выше пластичность).

Все металлокерамические сплавы делят на три группы :

· Однокарбидные. Вольфрамокобальтовые твердые сплавы ВК2, ВК6, ВК8, где цифры после букв означает процентное содержание кобальта. Увеличение процентного содержания кобальта увеличивает ударную вязкость. Сплавы этой группы наиболее прочные. Применяются для обработки чугуна, цветных металлов и их сплавов, неметаллических материалов. Теплостойкость 250-1000 о С.

· Двухкарбидные. В этих сплавах кроме компонентов сплавов групп ВК, включает карбид титана Т5К10, Т15К6, где 6-процентное содержание кобальта, 15-процентное содержание карбида титана, а остальное есть карбид вольфрама. Применяется при обработке углеродистых и легированных сталей. Предельная теплостойкость 1050 о С.

· Трехкарбидные. Дополнительно введен карбид тантала помимо тех, что перечислены выше. ТТ17К6, ТТ17К12, где 17- суммарное содержание карбидов титана и тантала, 12-содержание кобальта, т.о. 71-карбид вольфрама. Эти сплавы имеют высокую прочность, применяются при обработке жаропрочных сталей и титановых сплавов.

· Группа Р- (синяя)

Сплавы группы Р нужны для обработки материалов дающих сливную стружку (сталь)

· Группа М - (желтая)

При обработке нержавеющих, жаропрочных сталей и титановых сплавов

М40-ТТ7К12, ВК10-ОМ

М- мелкий, ОМ- очень мелкий

· Группа К - (красная)

Сплавы группы К применяются для обработки малопластичных материалов, цветных сплавов, пластмассы, древесины, чугуна

5. Минералокерамические инструментальные сплавы

Эти сплавы готовятся на основе окиси алюминия Al 2 O 3 c небольшими добавлениями окиси магния, подвергаются спеканию при 1700 о. Например, ЦМ332 используется при получистовой и чистовой обработке стальных и чугунных заготовок, обладает высокой износостойкостью, хорошими режущими свойствами, дешевле твердых сплавов, но хрупкий. Материал обладает теплостойкостью до 1200 о.

6. Сверхтвердые инструментальные материалы.

Это материалы на основе кубического нитрида бора КНБ, обладающие высокой твердостью и теплостойкостью. Примером может служить эльбор-Р, который используется при финишной обработке чугуна и закаленных сталей. При этом достигается шероховатость, характерная для шлифования. Режущая часть инструмента изготовляется из монокристаллов диаметром от 4 мм и длиной 6 мм.

Для изготовления режущей части инструмента применяются природные алмазы (А) и синтетические (АС) алмазы массой от 2 до 0,85 карата*. Природные алмазы применяются для чистового точения цветных металлов и сплавов пластмасс и других неметаллических материалов. Синтетические алмазы применяются при обрабработке высококремнистых материалов, стеклоплатика и пластмасс. Алмазы обладают высокой твёрдостью, малым коэффициентом трения и незначительной способностью к слипанию со стружкой, высокой износостойкостью. Недостатком является его низкая теплостойкость и дороговизна.

Сравнительная характеристика
инструментальных материалов

════════════════════════════════════

Геометрия токарного резца

При обработке материалов резанием различают следующие поверхности :

1- обрабатываемая

2 - обработанная

3 - поверхность резания

Распространенным инструментом для обработки наружних и внутренних поверхностей является токарный резец, он состоит из рабочей части - I и корпуса – II. Рабочая часть снабжается инструментальным материалом, корпус изготавливается из конструкционных сталей. Последний нужен для крепления инструмента в резодержателе.

Рабочая часть резца образуется рядом поверхностей, которые, пересекаясь, образуют режущую кромку и вершину резца–6. 1–поверхность, по которой сходит стружка. Задние поверхности 2 и 3 обращены к обрабатываемой заготовке. Пресекаясь с передней поверхностью 1 они образуют режущие кромки: главную–4 и вспомогательную–5. Соответственно задняя поверхность 2 (она обращена к поверхности резания) является главной, а 3–вспомогательной (направлена в сторону обработанной поверхности). Вершина резца есть точка пересечения режущих кромок.

Важную роль в физических процессах, происходящих в процессах резания, играют углы резца (углы резнаия)

a - задний угол уменьшает трение между задней поверхностью инструмента и рабочей поверхностью, увелитчение угла приводит к уменьшению прочности

a 1 – наличие данного угла уменьшает трение

g - передний угол может быть как положительным, так и отрицательным или нулевым, с уменьшением угла уменьшается деформация срезаемого слоя, так как инструмент легче врезается в материал, уменьшаются силы резания, улучшаются условия схода стружки, а при сильном увеличении угла снижается теплопроводность, увеличивается выкрашиваемость

b - угол заострения - угол между передней и главной задней поверхностями резца

d - угол резания - угол между передней поверхностью резца и плоскостью резания

j - главный угол в плане определяет шероховатость поверхности, сего уменьшением происходит улучшение качества поверхности, но одновременно усменьшается толщина и растет ширина срезаемого слоя материала, с уменьшением этого угла возможно возникновение вибрации

j 1 - вспомогательный угол в плане, при уменьшении угла возрастает прочность

e - угол при вершине резца угол между проекциями режущих кромок на основную плоскость= 180°- (j+j1)

l - угол наклона режущей кромки положителен тогда, когда вершина резца является высшей точкой, а отрицательным когда вершина резца является низшей точкой, оказывает влияние на направление схода стружки

Величины углов изменяются вследствие погрешности резца.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КОНТРОЛЬНАЯ РАБОТА

по технологии машиностроения

Тема: «Инструментальные материалы »

Выполнила:

Студентка группы ОТЗ-873

Васильева Ольга Михайловна

Проверил:

Мартынов Эдуард Захарович

Татарск 2010

Введение…………………………………………………………………………………………...……3

1. Основные требования к инструментальным материалам……………………………….…..4

2. Виды инструментальных материалов…………………………………………………….…..6

2.1. Углеродистые и легированные инструментальные стали…………………….................6

2.2. Быстрорежущие стали………………………………………………………….………....7

3. Твердые сплавы…………………………………………………………………………….……8

3.1.Минералокерамические материалы…………………………………………...………....10

3.2. Металлокерамические материалы………………………………………………………..11

3.3. Абразивные материалы………………………………………………………………..…..12

4. Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора…………………………………………………………………………………………..14

5. Стали для изготовления корпусов элементов………………………………………….…..16 Заключение……………………………………………………………………………………….…...17 Список использованной литературы……………………………………………………………..….18

Введение

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего, увеличить их быстроходность и мощность. Аналогичное явление наблюдалось

также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой

износостойкостью в условиях высоких давлений и температур.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми. В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.

1. Основные требования к инструментальным материалам.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость.

Твердость инструментального материала должна быть выше твердости обрабатываемого не менее чем в 1,4 - 1.7 раза.

2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью . Способность материала сохранять высокую твердость при температурах резания называется теплостойкостью … Для быстрорежущей стали – теплостойкость еще называют красностойкостью (т.е. сохранение твердости при нагреве до температур начала свечения стали)

Увеличение уровня теплостойкости инструментального материала позволяет ему работать с большими скоростями резания (табл. 1).

Таблица 1 - Теплостойкость и допустимая скорость резания инструментальных материалов.

Материал

Теплостойкость, К

Допустимая скорость при резании Стали 45 м/мин

Углеродистая сталь

Легированная сталь

Быстрорежущая сталь

Твердые сплавы:

Группа ВК

Группы ТК и ТТК

безвольфрамовые

с покрытием

Керамика

3. Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента не обеспечивается необходимой прочностью, то это приводит к поломке инструмента и выкрашиванию режущих кромок.

Таким образом, инструментальный материал должен иметь достаточный уровень ударной вязкости и сопротивляться появлению трещин (т.е. иметь высокую трещиностойкость).

4. Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.

5. Необходимым условием достижения высоких режущих свойств инструмента является низкая физико-химическая активность инструментального материала по отношению к обрабатываемому . Поэтому кристаллохимические свойства инструментального материала должны существенно отличаться от соответствующих свойств обрабатываемого материала. Степень такого отличия сильно влияет на интенсивность физико-химических процессов (адгезионно-усталостные, коррозионно-окислительные и диффузионные процессы) и изнашивание контактных площадок инструмента.

6. Инструментальный материал должен обладать технологическими свойствами , обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей ими являются хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки (малая чувствительность к перегреву и обезуглероживанию, хорошие закаливаемость и прокаливаемость, минимальные деформирование и образование трещин при закалке и т.д.); хорошая шлифуемость после термической обработки.

2. ВИДЫ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ

Инструментальные стали

Для режущих инструментов применяют быстрорежущие стали, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 0,7-1,3% и суммарным содержанием легирующих элементов (кремния, марганца, хрома и вольфрама) от 1,0 до 3,0%.

2.1. Углеродистые и легированные инструментальные стали.

Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали марок У7, У7А…У13, У13А. Помимо железа и углерода, эти стали содержат 0,2…0,4% марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200…250°С) их твердость резко уменьшается.

Легированные инструментальные стали, по своему химическому составу, отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного либо нескольких легирующих элементов: хрома, никеля, вольфрама, ванадия, кобальта, молибдена. Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами – лучшей закаливаемостью и прокаливаемостью, меньшей склонности к короблению, но теплостойкость их равна 350…400°С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, метчики).

Следует отметить, что за последние 15-20 лет существенных изменений этих марок не произошло, однако наблюдается устойчивая тенденция снижения их доли в общем объеме используемых инструментальных материалов.

2.2. Быстрорежущие стали.

В настоящее время быстрорежущие стали являются основным материалом для изготовления режущего инструмента, несмотря на то, что инструмент из твердого сплава, керамики и СТМ обеспечивает более высокую производительность обработки.

Широкое использование быстрорежущих сталей для изготовления сложнопрофильных инструментов определяется сочетанием высоких значений твердости (до HRC@68) и теплостойкости (600-650°С) при высоком уровне хрупкой прочности и вязкости, значительно превышающих соответствующие значения для твердых сплавов. Кроме того, быстрорежущие стали обладают достаточно высокой технологичностью, так как хорошо обрабатываются давлением и резанием в отожженном состоянии.

В обозначении быстрорежущей стали буква Р означает, что сталь быстрорежущая, а следующая за буквой цифра – содержание средней массовой доли вольфрама в %. Следующие буквы обозначают: М – молибден, Ф – ванадий, К – кобальт, А – азот. Цифры, следующие за буквами, означают их среднюю массовую долю в %. Содержание массовой доли азота составляет 0,05-0,1%.

Современные быстрорежущие стали можно разделить на три группы: нормальной, повышенной и высокой теплостойкости.

К сталям нормальной теплостойкости относятся вольфрамовая Р18 и вольфрамомолибденовая Р6М5 стали (табл. 2.2). Эти стали имеют твердость в закаленном состоянии 63…64 HRC, предел прочности при изгибе 2900…3400Мпа, ударную вязкость 2,7…4,8Дж/м2 и теплостойкость 600…620°С. Указанные марки стали получили наиболее широкое распространение при изготовлении режущих инструментов. Объем производства стали Р6М5 достигает 80% от всего объема выпуска быстрорежущей стали. Она используется при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс.

Стали повышенной теплостойкости характеризуются повышенным содержанием углерода, ванадия и кобальта.

Среди ванадиевых сталей наибольшее применение получила марка Р6М5Ф3.

Наряду с высокой износостойкостью, ванадиевые стали

обладают плохой шлифуемостью из-за присутствия карбидов ванадия (VC), так как твердость последних не уступает твердости зерен электрокорундового шлифовального круга (Al2 O3). Обрабатываемость при шлифовании – «шлифуемость», - это важнейшее технологическое свойство, которое определяет не только особенности при изготовлении инструментов, но и при его эксплуатации (переточках).

Таблица 2. Химический состав быстрорежущих сталей

Марка стали

Массовая доля, %

Вольфрам

Молибден

Стали нормальной теплостойкости

Стали повышенной теплостойкости

Стали высокой теплостойкости

3. Твердые сплавы В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью. Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих свойств при температуре нагрева до 750-1100 °С. Установлено что твердосплавным инструментом, имеющим в своем составе килограмм вольфрама, можно обработать в 5 раз больше материала, чем инструментом из быстрорежущей стали с тем же содержанием вольфрама. Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали. Твердосплавные инструменты пригодны для обработки закаленных сталей и таких неметаллических материалов, как стекло, фарфор и т. п. Производство металлокерамических твердых сплавов относится к области порошковой металлургии. Порошки карбидов смешивают с порошком кобальта. Из этой смеси прессуют изделия требуемой формы и затем подвергают спеканию при температуре, близкой к температуре плавления кобальта. Так изготовляют пластинки твердого сплава различных размеров и форм, которыми оснащаются резцы, фрезы, сверла, зенкеры, развертки и др. Пластинки твердого сплава крепят к державке или корпусу напайкой или механически при помощи винтов и прижимов. Наряд с этим в машиностроительной промышленности применяют мелкоразмерные, монолитные твердосплавные инструменты, состоящие из твердых сплавов. Их изготовляют из пластифицированных заготовок. В качестве пластификатора в порошок твердого сплава вводят парафин до 7-9 %. Из пластифицированных сплавов прессуют простые по форме заготовки, которые легко обрабатываются обычным режущим инструментом. После механической обработки заготовки спекают, а затем шлифуют и затачивают. Из пластифицированного сплава заготовки монолитных инструментов могут быть получены путем мундштучного прессования. В этом случае спрессованные твердосплавные брикеты помещают в специальный контейнер с твердосплавным профилированным мундштуком. При продавливании через отверстие мундштука изделие принимает требуемую форму и подвергается спеканию. По такой технологии изготовляют мелкие сверла, зенкеры, развертки и т. п. Монолитный твердосплавный инструмент может также изготовляться из Окончательно спеченных твердосплавных цилиндрических заготовок с последующим вышлифовыванием профиля алмазными кругами. В зависимости от химического состава металлокерамические твердые сплавы, применяемые для производства режущего инструмента, разделяются на три основные группы. Сплавы первой группы изготовляют на основе карбидов вольфрама и кобальта. Они носят название вольфрамокобальтовых. Это сплавы группы ВК. Ко второй группе относятся сплавы, получаемые на основе карбидов вольфрама и титана и связующего металла кобальта. Это двухкарбидные титано- вольфрамокобальтовые сплавы группы ТК. Третья группа сплавов состоит из карбидов вольфрама, титана, танталаи кобальта. Это трехкарбидные титано-танталовольфрамокобальтовые сплавы группы ТТК. К однокарбидным сплавам группы ВК относятся сплавы: ВКЗ, ВК4, ВК6, ВК8, ВК10, ВК15. Эти сплавы состоят из зерен карбида вольфрама, сцементированных кобальтом. В марке сплавов цифра показывает процентное содержание кобальта. Например, сплав ВК8 содержит в своем составе 92 %карбида вольфрама и 8 % кобальта. Рассматриваемые сплавы применяются для обработки чугуна, цветных металлов и неметаллических материалов. При выборе марки твердого сплава учитывают содержание кобальта, которое предопределяет его прочность. Из сплавов группы ВК сплавы ВК15, ВК10, ВК8 являются наиболее вязкими и прочными, хорошо противостоят ударам и вибрациям, а сплавы ВК2, ВКЗ обладают наиболее высокой износостойкостью и твердостью при малой вязкости, слабо сопротивляются ударам и вибрациям. Сплав ВК8 применяется для черновой обработки при неравномерном сечении среза и прерывистом резании, а сплав ВК2 -для чистовой отделочной обработки при непрерывном, резании с равномерным сечением среза. Для получистовых работ и черновой обработки с относительно равномерным сечением срезаемого слоя применяются сплавы ВК4, ВК6. Сплавы ВК10 и ВК15 находят применение при обработке резанием специальных труднообрабатываемых сталей. Режущие свойства и качество твердосплавного инструмента определяются не только химическим составом сплава, но и его структурой, т. е. величиной зерна. С увеличением размера зерен карбида вольфрама прочность сплава возрастает, а износостойкость уменьшается, и наоборот. В зависимости от размеров зерен карбидной фазы сплавы могут быть мелкозернистые, у которых не менее 50 % зерен карбидных фаз имеют размер порядка 1 мкм, среднезернистые - с величиной зерна 1-2 мкм и крупнозернистые, у которых размер зерен колеблется от 2 до 5 мкм. Для обозначения мелкозернистой структуры в конце марки сплава ставится буква М, а для крупнозернистой структуры - буква К. Буквы ОМ указывают на особо мелкозернистую структуру сплава. Буква В после цифры указывает на то, что изделия из твердого сплава спекаются в атмосфере водорода. Твердосплавные изделия одного и того же химического состава могут иметь различную структуру. Получены особо мелкозернистые сплавы ВК6ОМ, В10ОМ, ВК150М. Сплав ВК6ОМ дает хорошие результаты при тонкой обработке жаропрочных и нержавеющих сталей, чугунов высокой твердости, алюминиевых сплавов. Сплав ВК10ОМ предназначен червовой и получерновой, а сплав ВК15ОМ - для особо тяжелых случаев обработки нержавеющих сталей, а также сплавов вольфрама, молибдена, титана и никеля. Мелкозернистые сплавы, такие, как сплав ВК6М, используют для чистовой обработки при тонких сечениях среза стальных, чугунных, пластмассовых и других деталей. Из пластифицированных заготовок мелкозернистых сплавов ВК6М, ВК10М, ВК15М получают цельные инструменты. Крупнозернистые сплавы ВК4В, ВК8В, более прочные, чем обычные сплавы, применяют при резании с ударами для черновой обработки жаропрочных и нержавеющих сталей с большими сечениями среза. При обработке сталей инструментами, оснащенными вольфрамокобальтовыми сплавами, в особенности при повышенных скоростях резания, происходит быстрое образование лунки на передней поверхности, приводящее к выкрашиванию режущей кромки сравнительно быстрому износу инструмента. Для обработки стальных заготовок применяют более износостойкие твердые сплавы группы ТК. Сплавы группы ТК (ТЗОК4, Т15К6, Т14К8, Т5К10, Т5К12) состоят из зерен твердого раствора карбида вольфрама в карбиде титана и избыточных зерен карбида вольфрама, сцементированных кобальтом. В марке сплава цифра после буквы К показывает процентное содержание кобальта, а после буквы Т – процентное содержание карбидов титана. Буква В в конце марки обозначает, что сплав имеет крупнозернистую структуру. Сплавы группы ТТК состоят из зерен твердого раствора карбида титана, карбида тантала, карбида вольфрама и избыточных зерен карбида вольфрама, сцементированных кобальтом. К сплавам группы ТТК относятся ТТ7К12, ТТ8К6, ТТ10К8Б, ТТ20К9. Сплав ТТ7К12 содержит 12% кобальта, 3% карбида тантала, 4% карбида титана и 81% карбида вольфрама. Введение в состав сплава карбидов тантала значительно повышает его прочность, но снижает красностойкость. Сплав ТТ7К12 рекомендуется для тяжелых условий при обточке по корке и работе с ударами, а также для обработки специальных легированных сталей. Сплав ТТ8К6 применяют для чистовой и получистовой обработки чугуна, для непрерывной обработки с малыми сечениями среза стального литья, высокопрочных нержавеющих сталей, сплавов цветных металлов, некоторых марок титановых сплавов. Все марки твердых сплавов разбиты по международной классификации (ИСО) на группы: К, М и Р. Сплавы группы К предназначены для обработки чугуна и цветных металлов, дающих стружку надлома. Сплавы группы М – для труднообрабатываемых материалов, сплавы группы Р – для обработки сталей. С целью экономии дефицитного вольфрама разрабатываются безвольфрамовые металлокерамические твердые сплавы на основе карбидов, а также карбидонитридов переходных металлов, в первую очередь титана, ванадия, ниобия, тантала. Эти сплавы изготовляют на никелемолибденовой связке. Полученные твердые сплавы на основе карбидов по своим характеристикам примерно равноценны стандартным сплавам группы ТК. В настоящее время промышленностью освоены безвольфрамовые сплавы ТН-20, ТМ-3, КНТ-16 и др. Эти сплавы обладают высокой окалиностойкостью, низким коэффициентом трения, меньшим по сравнению с вольфрамсодержащими сплавами удельным весом, но имеют, как правило, более низкую прочность, склонность к разрушению при повышенных температурах. Изучение физико-механических и эксплуатационных свойств безвольфрамовых твердых сплавов показало, что они успешно могут быть использованы для чистовой и получистовой обработки конструкционных сталей и цветных сплавов, но значительно уступают сплавам группы ВК при обработке титановых и нержавеющих сталей. Одним из путей повышения эксплуатационных характеристик твердых сплавов является нанесение на режущую часть инструмента тонких износостойких покрытий на основе нитрида титана, карбида титана, нитрида молибдена, окиси алюминия. Толщина наносимого слоя покрытия колеблется от 0,005 до 0,2 мм. Опыты показывают, что тонкие износостойкие покрытия приводят к значительному росту стойкости инструмента. 3.1. Минералокерамические материалы Минералокерамические материалы для изготовления режущих инструментов стали применять с 50-х годов. В СССР был создан минералокерамический материал марки ЦМ-332, состоящий в основном из оксида алюминия А12О3 с небольшой добавкой (0,5–1,0%) оксида магния МgО. Оксид магния препятствует росту кристаллов во время спекания и является хорошим связующим средством. Минералокерамические материалы изготовляются в форме пластинок и присоединяются к корпусам инструментов механическим путем, приклеиванием или припаиванием. Минералокерамика ЦМ-332 обладает высокой твердостью, ее красностойкость достигает 1200°С. Однако она отличается низкой прочностью при изгибе (350-400 МН/м2) и большой хрупкостью, что приводит к частым выкрашиваниям и поломкам пластинок при работе. Существенным недостатком минералокерамики является ее крайне низкое сопротивление циклическому изменению температуры. Вследствие этого даже при небольшом числе перерывов в работе на контактных поверхностях инструмента появляются микротрещины, которые приводят к его разрушению даже при небольших усилиях резания. Это обстоятельство ограничивает практическое применение минералокерамического инструмента. Минералокерамика успешно может применяться для чистового обтачивания чугуна, сталей, неметаллических материалов и цветных металлов с большими скоростями и ограниченным числом перерывов в работе. Минералокерамику марки ВШ наиболее эффективно применять для чистового точения углеродистых и малолегированных сталей, а также чугунов с твердостью НВ?260. При прерывистом точении керамика марки ВШ дает неудовлетворительные результаты. В этом случае целесообразно использовать керамику марки ВЗ. Минералокерамику марок ВОК-60, ВОК-63 используются при фрезеровании закаленной стали и высокопрочных чугунов. Новым инструментальным материалом, созданным на основе нитрида кремния, является силинит-Р. Он используется при чистовом точении сталей, чугуна, алюминиевых сплавов. 3.2. Металлокерамические материалы Металлокерамические материалы или детали получаются прессованием соответствующих смесей порошков в стальных пресс-формах под высоким давлением с последующим спеканием. Этим методом получаются пористые изделия. Для уменьшения пористости и повышения механических свойств металлокерамических изделий прибегают к калибровке давлением, а также к дополнительной Термообработке.
Главным преимуществом металлокерамической технологии является возможность получения:
сплавов из тугоплавких металлов (например, твердые сплавы);
«псевдосплавов», или композиций из металлов, не смешивающихся в расплавленном виде и не образующих твердых растворов (железо - свинец, вольфрам - медь);
композиций из металлов и неметаллов (железо - графит);
пористых материалов.
Методы порошковой металлургии позволяют получать материал в виде готовых изделий точных размеров бет последующей обработки резанием.
Основными видами металлокерамических изделий являются:
1.Антифрикционные материалы (железо - гр.чфит, бронза - графит, пористое железо).
2.Фрикционные материалы (металлическая основа + графит, асбест, кремний).
3.Металлокерамические детали (шестерни, шайбы, втулки и т. д.).
4.Медно-графитовые и бронзо-графитовые щетки для динамо-машин и электромоторов.
5.Магнитные материалы (постоянные магниты высокой подъемной силы из сплавов железа с алюминием).
6.Пористые металлокеоамическне изделия (фильтры, уплошепия).
7.Твердые сплавы.
Твердые сплавы
Твердые сплавы представляют самостоятельную группу инструментальных материалов. Они применяются для различных видов станочной обработки металлов, для изготовления штампового и волочильного инструмента, правки шлифовальных кругов и т. д.
В группу металлокерамических твердых сплавов (ГОСТ 3882-67) входят:
а) вольфрамовые твердые сплавы, состоящие на 85- У0% “З. зерен карбида вольфрама (\\’С), скрепленных кобальтом, выполняющим в этих сплавах роль связующего вещества;
б) титановольфрамовые твердые сплавы, могущие состоять из зерен твердого раствора карбида вольфрама в карбиде титана (Т\С) н. избыточных зерен карбида вольфрама со связующим элементом - кобальтом или только из зерен твердого раствора карбида вольфрама в карбиде титана (связкой также является кобальт);
в) титапо-таптало-вольфрамовые твердые сплавы, структура которых состоит из зерен твердого раствора (карбид титана - карбид тантала - карбид вольфрама) и избыточных зерен карбида вольфрама, сцементированных кобальтом.
Химический состав некоторых металлокерамических твердых сплавов
Для использования в качестве режущего инструмента из твердых сплавов изготавливаются пластинки и головки различной формы, которые крепятся к державкам резцов, зенкеров, фрез, сверл, разверток и т. д. Металлокерамические материалы или детали получаются прессованием соответствующих смесей порошков в стальных пресс-формах под высоким давлением с последующим спеканием. Этим методом получаются пористые изделия. Для уменьшения пористости и повышения механических свойств металлокерамических изделий прибегают к калибровке давлением, а также к дополнительной термообработке.

3.3. Абразивные материалы Большое место в современном производстве деталей машин занимают процессы шлифования, при которых используются различные абразивные инструменты. Режущими элементами этих инструментов служат твердые и теплоустойчивые зерна абразивного материала с острыми кромками. Абразивные материалы подразделяются на естественные и искусственные. К естественным абразивным материалам относятся такие минералы, как кварц, наждак, корунд и др. Естественные абразивные материалы отличаются большой неоднородностью, наличием посторонних примесей. Поэтому по качеству абразивных свойств они не удовлетворяют растущим потребностям промышленности. В настоящее время обработка искусственными абразивными материалами занимает ведущее место в машиностроении. Наиболее распространенными искусственными абразивными материалами являются электрокорунды, карбиды кремния и бора. К искусственным абразивным материалам относятся также полировально- доводочные порошки – оксиды хрома и железа. Особую группу искусственных абразивных материалов составляют синтетические алмазы и кубический нитрид бора. Электрокорунд получают электрической плавкой материалов, богатых оксидом алюминия, например, из боксита или глинозема в смеси с восстановителем (антрацитом или коксом). Электрокорунд выпускается следующих разновидностей: нормальный, белый, хромистый, титанистый, циркониевый, монокорунд и сферокорунд. Электрокорунд нормальный содержит 92-95 % оксида алюминия и подразделяется на несколько марок: 12А, 13А, 14А, 15А, 16А. Зерна электрокорунда нормального наряду с высокой твердостью и.механической прочностью имеют значительную вязкость, необходимую при выполнении работ с переменными нагрузками при больших давлениях. Поэтому электрокорунд нормальный применяют для обработки различных материалов повышенной прочности: углеродистой и легированной сталей, ковкого и высокопрочного чугуна, никелевых и алюминиевых сплавов. Электрокорунд белый марок 22А, 23А, 24А, 25А отличается высоким содержанием оксида алюминия (98-99%). По сравнению с электрокорундом нормальным он является более твердым, имеет повышенную абразивную способность и хрупкость. Электрокорунд белый может быть использован для обработки тех же материалов, что и электрокорунд нормальный. Однако из-за более высокой стоимости его применяют на более ответственных работах для операций окончательного и профильного шлифования, резьбошлифования, заточки режущего инструмента. Электрокорунд хромистый марок 32А, ЗЗА, 34А наряду с оксидом алюминия А12О3 содержит до 2% оксида хрома Сr2О3. Добавка оксида хрома меняет его микроструктуру и строение. По прочности электрокорунд хромистый приближается к электрокорунду нормальному, а по режущим свойствам - к электрокорунду белому. Рекомендуется применять электрокорунд хромистый для круглого шлифования изделий из конструкционных и углеродистых сталей при интенсивных режимах, где он обеспечивает повышение производительности на 20- 30 % по сравнению с электрокорундом белым. Электрокорунд титанистый марки 37А наряду с оксидом алюминия содержит оксид титана ТiO2. Он отличается от электрокорунда нормального большим постоянством свойств и повышенной вязкостью. Это позволяет использовать его в условиях тяжелых и неравномерных нагрузок. Электрокорунд титанистый применяется на операциях предварительного шлифования с увеличенным съемом металла. Электрокорунд циркониевый марки ЗЗА наряду с оксидом алюминия содержит оксид циркония. Он имеет высокую прочность и применяется в основном для обдирочных работ с большими удельными давлениями резания. Монокорунд марок 43А, 44А, 45А получается в виде зерна, имеющего повышенную прочность, острые кромки и вершины с более выраженным свойством самозатачивания по сравнению с электрокорундом. Это обеспечивает ему повышенные режущие свойства. Монокорунд предпочтителен для шлифования труднообрабатываемых сталей и сплавов, для прецизионного шлифования сложных профилей и для сухого шлифования режущего инструмента, Сферокорунд содержит более 99 % А1203 и получается в виде полых сфер. В процессе шлифования сферы разрушаются с образованием острых кромок. Сферокорунд целесообразно применять при обработке таких материалов, как резина, пластмассы, цветные металлы. Карбид кремния получается в результате взаимодействия кремнезема и углерода в электрических печах, а затем дробления на зерна. Он состоит из карбида кремния и незначительного количества примесей. Карбид кремния, обладает большой твердостью, превосходящей твердость электрокорунда, высокой механической прочностью и режущей способностью. Карбид кремния черный марок 53С, 54С, 55С применяют для обработки твердых, хрупких и очень вязких материалов; твердых сплавов, чугуна, стекла, цветных металлов, пластмасс. Карбид кремния зеленый марок 63С, 64С используют для заточки твердосплавного инструмента, шлифования керамики. Карбид бора В4С обладает высокой твердостью, высокой износоустойчивостью и абразивной способностью. Вместе с тем карбид бора очень хрупок, что и определяет его применение в промышленности в виде порошков и паст для доводки твердосплавных режущих инструментов. Абразивные материалы характеризуются такими основными свойствами, как форма абразивных зерен, зернистость, твердость, механическая прочность, абразивная способность зерен. Твердость абразивных материалов характеризуется сопротивлением зерен поверхностному измельчению, местному воздействию приложенных сил. Она должна быть выше твердости обрабатываемого материала. Твердость абразивных материалов определяют методом царапания острия одного тела по поверхности другого или методом вдавливания алмазной пирамиды под малой нагрузкой в абразивное зерно. Механическая прочность характеризуется дробимостью зерен под влиянием внешних усилий. Оценку прочности производят раздавливанием навески абразивных зерен в стальной форме под прессом с помощью определенной статической нагрузки. При обдирочных режимах с большим съемом металла требуются прочные абразивы, а при чистовом шлифовании и обработке труднообрабатываемых материалов предпочтительны абразивы с большей хрупкостью и способностью к самозатачиванию.

4. Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора

Алмаз как инструментальный материал получил в последние годы широкое применение в машиностроении. В настоящее время выпускается большое количество разнообразного инструмента с использованием алмазов: шлифовальные круги, инструменты для правки шлифовальных кругов из электрокорунда и карбида кремния, пасты и порошки для доводочных и притирочных операций. Значительные по размерам кристаллы алмазов применяют для изготовления алмазных резцов, фрез, сверл и других режущих инструментов. Область применения алмазного инструмента с каждым годом вес более расширяется. Алмаз представляет собой одну из модификаций углерода кристаллического строения. Алмаз – самый твердый из всех известных в природе минералов. Высокая твердость алмаза объясняется своеобразием его кристаллического строения, прочностью связей атомов углерода в кристаллической решетке, расположенных на равных и очень малых расстояниях друг от друга. Коэффициент теплопроводности алмаза в два и более раза выше, чем у сплава ВК8, поэтому тепло от зоны резания отводится сравнительно быстро. Возросшие потребности в алмазном инструменте не могут быть полностью удовлетворены за счет природных алмазов. В настоящее время освоено промышленное производство синтетических алмазов из графита при больших давлениях и высоких температурах. Синтетические алмазы могут быть различных марок, которые отличаются между собой прочностью, хрупкостью, удельной поверхностью и формой зерен. В порядке возрастания прочности, снижения хрупкости и удельной поверхности марки шлифовальных порошков из синтетических алмазов располагаются так: АС2, АС4, АС6, АС15, АС32. К числу новых видов инструментальных материалов относятся сверхтвердые поликристаллы на основе алмаза и кубического нитрида бора.

Кубический нитрид бора (КНБ) сверхтвердый материал не имеющий природного аналога. Впервые кубический нитрид бора был синтезирован в 1956 году (фирмой «Дженерал Электрик») при высоких давлениях (свыше 4,0 ГПа) и высокой температуре (свыше 1473К) из гексагонального нитрида бора в присутствии щелочных и щелочноземельных металлов (свинец, сурьма, олово и др.). Кубический нитрид бора, выпускаемый фирмой «Дженерал Электрик» был назван Боразоном.

Диаметр заготовок из сверхтвердых поликристаллов находится в пределах 4-8мм, а высота – 3-4мм. Такие размеры заготовок, а также совокупность физических, механических свойств позволяют с успехом использовать рассматриваемые материалы в качестве материала для изготовления режущей части таких инструментов, как резцы, торцевые фрезы и др. Сверхтвердые поликристаллы на основе алмаза особенно эффективны при резании таких материалов, как стеклопластики, цветные металлы и их сплавы, титановые сплавы. Значительное распространение рассматриваемых композитов объясняется рядом присущих им уникальных свойств – твердостью, приближающейся к твердости алмаза, высокой теплопроводностью, химической инертностью к железу. Однако они обладают повышенной хрупкостью, что делает невозможным их применение в условиях ударных нагрузок. Более устойчивы к удару инструменты из композитов 09 и 10. Они оказываются эффективными при обработке с тяжелыми режимами и ударными нагрузками закаленных сталей и чугунов. Применение сверхтвердых синтетических материалов оказывает существенное влияние на технологию машиностроения, открывая перспективу замены во многих случаях шлифования точением и фрезерованием. Перспективным видом инструментального материала являются двухслойные пластины круглой, квадратной, трехгранной или шестигранной форм. Верхний слой пластин состоит из поликристаллического алмаза, а нижний из твердого сплава либо металлической подложки. Поэтому пластины можно применять для инструментов с механическим креплением в державке. Сплав силинит-Р на основе нитрида кремния с добавками окиси алюминия и титана занимает промежуточное положение между твердыми сплавами на карбидной основе и сверхтвердыми материалами на основе алмаза и нитрида бора. Как показали исследования, он может применяться при чистовом точении сталей, чугуна, сплавов алюминия и титана. Преимущество этого сплава заключается и в том, что нитрид кремния никогда не станет дефицитным. 5. Стали для изготовления корпусов элементов У сборного инструмента корпуса и элементы крепления изготовляются из конструкционных сталей марок: 45, 50, 60, 40Х, 45Х, У7, У8, 9ХС и др. Наибольшее распространение получила сталь 45, из которой изготовляют державки резцов, хвостовики сверл, зенкеров, разверток, метчиков, корпуса сборных фрез, расточные оправки. Для изготовления корпусов инструментов, работающих в тяжелых условиях, применяют сталь 40Х. Она после закалки в масле и отпуска обеспечивает сохранение точности пазов, в которые вставляются ножи. В том случае, когда отдельные части корпуса инструмента работают на износ, выбор марки стали определяется соображениями получения высокой твердости в местах трения. К таким инструментам относятся, например, твердосплавные сверла, зенкеры, у которых направляющие ленточки в процессе работы соприкасаются с поверхностью обработанного отверстия и быстро изнашиваются. Для корпуса подобных инструментов применяют углеродистую инструментальную сталь, а также легированную инструментальную сталь 9ХС. Заключение

Развитие новой техники диктует требования к разработке новых материалов, в число которых входят сверхтвердые материалы. Традиционно их используют в металлообработке, инструментальном производстве, камне и стеклообработке, обработке строительных материалов, керамики, ферритов, полупроводниковых и др. материалов. В последние годы интенсивно ведутся работы по применению алмазов в электронике, лазерной технике, медицине и других областях науки и техники. В индустриально развитых странах мира получению сверхтвердых материалов и изделий из них уделяется большое внимание. Российская Федерация за последние годы существенно продвинулась в части создания отечественного алмазного производства. Большой вклад в решении этой проблемы вносит государственная научно-техническая программа «Алмазы», во многом благодаря поддержке которой свыше 25 % потребностей республики в алмазной продукции сегодня удовлетворяется за счет собственного производства.

Более полное решение проблемы импортозамещения требует дальнейшего проведения работ по совершенствованию существующих и разработке новых материалов и технологий получения сверхтвердых материалов и изделий на их основе, расширения областей их применения. Сегодня работы в области сверхтвердых материалов в России ведутся в широком спектре проблем, в том числе: синтез порошков алмаза и кубического нитрида бора, выращивание крупных монокристаллов алмаза, выращивание монокристаллов драгоценных камней, получение поликристаллов алмаза, кубического нитрида бора и композиций на их основе, в том числе с использованием нанопорошков, разработка новых композиционных алмазосодержащих материалов и технологий получения из них инструмента, разработка технологии и оборудования для нанесения алмазных пленок и покрытий, сертификация алмазной продукции, а также освоение мощностей по выпуску алмазной продукции.

Список использованной литературы

1. Новые инструментальные материалы и области их применения. Учебн. пособие / В.В.Коломиец, - К.: УМК ВО, 1990. – 64 с.

2. Васин С.А., Верещака А.С., Кушнир В.С. Резание металлов: Термомеханический подход к системе взаимосвязей при резании: Учебн. для техн. вузов. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2001. – 448 с.

3. Металлообрабатывающий твердосплавный инструмент: Справочник В.С. Самойлов, Э.Ф.Эйхманс, В.А.Фальковский и др. – М.: Машиностроение, 1988. – 368 с.

4. Инструменты из сверхтвердых материалов / Под ред. Н.В.Новикова. – Киев: ИСМ НАНУ, 2001. – 528 с.

Лабораторная работа № 9

Применение инструментальных материалов»

Цель работы

Теоретический материал

Классификация инструментальных материалов

Инструментальными называют углеродистые и легированные инструментальные стали, а также твердые сплавы, обладающие высокой прочностью, износостойкостью, теплостойкостью.

Они предназначены для изготовления режущего, измерительного инструмента и штампов холодного и горячего деформирования.

Для режущего инструмента (резцы, сверла, фрезы и др.) применяются заэвтектоидные стали, структура которых после термообработки (закалка и низкий отпуск) мартенсит и избыточные карбиды.

Для инструментов, требующих повышенной вязкости (штампы горячего деформирования), применяют доэвтектоидные стали, которые после закалки на мартенсит подвергают отпуску при более высокой температуре для получения структуры троостита.

Стали для измерительного инструмента (плиток, калибров, шаблонов), кроме высокой твердости, износостойкости, должны сохранять постоянство размеров и хорошо шлифоваться. Измерительный инструмент подвергают закалке в масле с целью получения минимального количества остаточного аустенита.

Материалы для режущих инструментов

Условия работы инструментов зависят от режимов резания (скорости, подачи и глубины снимаемой стружки) и свойств обрабатываемого материала – от твердости и вязкости.

Эти стали по теплостойкости подразделяются на три группы:

Не обладающие теплостойкостью (способность сохранять твердость при длительном нагреве) углеродистые и низколегированные стали (рабочие температуры до 200 0);

Полутеплостойкие (400 0 –500 0), содержащие свыше 0,6–0,7 % С и 4–18 % хрома;

Теплостойкие (до 550 0 –650 0) высоколегированные стали, содержащие хром, вольфрам, ванадий, молибден, кобальт (650 0 –800 0).

Углеродистые инструментальные стали

Углеродистые инструментальные стали - У7А, У8А…У13А.

Эти стали используют в качестве режущего инструмента для резания материалов с малой скоростью, так как их твердость падает при нагреве 190 0 –200 0 С.

Маркировка

Углеродистые инструментальные стали маркируются буквой «У» (углеродистая), следующая за ней цифра У9, У10…У13 показывает среднее содержание цементита в десятых долях процента. Буква «А» в конце У10А указывает, что сталь высококачественная (содержание примесей серы < 0,04 % S и фосфора < 0,035 % P).

Например, У12А.

У – углеродистая инструментальная 12–1,2 % С, А – высококачественная.

Применение

Стали У7, У8, У9, обеспечивающие более высокую вязкость (по сравнению со сталями У10, У11, У 12), применяют для инструментов, подвергающихся ударам: зубила, долото, стамески. Твердость таких материалов после закалки и последующего отпуска при Т н =280…325 о HRC 48–58 и имеет структуру отпущенный троосто-мартенсит (в первом случае), или троостит (во втором случае).

Режущие инструменты (мелкие метчики, сверла, напильники, развертки) изготавливают из заэвтектоидных сталей У10, У11, У12 и У13.

Такие инструменты обладают повышенной износостойкостью и твердостью (HRC 60–64 на рабочих гранях). Но твердость падает при нагреве свыше 200 0 . В связи с этим инструменты из этих сталей пригодны для небольших скоростей резания.

Низколегированные стали

Эти стали, содержат до 5 % легирующих элементов, таблице 1, которые вводят для увеличения закаливаемости, уменьшения деформаций.

Таблица 1

Химический состав наиболее применяемых низколегированных

инструментальных сталей (ГОСТ 5950 – 73, ГОСТ 1263 – 73)

Марка стали Содержание элементов, %
С Si Cr W M 0 V Прочие
ХВ4 1,25–1,45 - 0,4–0,7 3,5–4,3 - 0,15–0,30 -
9ХС 0,85–0,95 1,2–1,6 0,95–1,25 - - - -
ХВГ 0,9–1,05 - 0,9–1,2 1,2–1,6 - - 0,8–1,1Мn
ХВСТ 0,9–1,05 0,65-1 0,6–1,1 0,5–0,8 - 0,05–0,13 0,6–0,9 Мn

Структура низколегированных инструментальных сталей (мартенсит и избыточный карбид) обеспечивает высокую твердость (62–69 HRC) и износостойкость. Но из-за низкой теплостойкости имеет практически одинаковые с углеродистыми сталями эксплутационные свойства. В отличие от углеродистых эти стали менее склонны к перегреву и позволяют изготавливать инструменты больших размеров и сложной формы.

Маркировка

Марка легированных сталей состоит из сочетания букв и цифр, обозначающих ее химический состав. По ГОСТ 4543 – 71 принято обозначать хром – Х, никель – Н, марганец – Г, кремний – С, молибден – М, вольфрам – В, титан – Т, ванадий – Ф, алюминий – Ю, медь – Д, бор – Р, кобальт – К. Цифра, стоящая после буквы, указывает на среднее содержание легирующего элемента в процентах. Если цифра отсутствует, то легирующего элемента меньше или около одного процента. Цифра в начале марки стали, показывает содержание цементита в десятых долях процента.

Например, 9ХС – цементита (в среднем) 0,9 %, Х – хром – 1 %, С – кремний – 1 %

Применение

Сталь ХВ4 отличается высокой твердостью и износостойкостью (67– 69 HRC) и применяется для чистовой обработки твердых материалов. Эту сталь называют алмазной.

Сталь 9ХС имеет более высокую устойчивость к разупрочнению (по сравнению со сталью Х) при нагреве до 260 о. Ее применяют для изготовления фрез, сверл, резьбонарезных инструментов (HRC – 62…65).

Стали ХВГ, ХВТ (имеет малую деформацию при закалке) применяют для длинных стержневых инструментов: сверла, развертки, протяжки (HRC – 62…65).

Сложнолегированная сталь ХВСГ отличается высокой твердостью, износостойкостью, из нее изготавливают инструменты большего поперечного сечения (до 100 мм): фрезы, сверла и др (HRC – 63…64).

Высоколегированные инструментальные стали

(быстрорежущие стали)

К этой группе относятся быстрорежущие стали, предназначенные для изготовления инструментов высокой производительности. Основное свойство этих сталей – высокая теплостойкость (обеспечивается введением большого количества вольфрама, молибдена, хрома, ванадия).

Инструменты из этой стали, сохраняют высокую твердость до 600 о и допускают в 2–4 раза более производительные режимы резания. По сравнению с углеродистыми и низколегированными по уровню допустимых скоростей обработки резанием быстрорежущие стали, делятся на две группы: нормальной и повышенной производительности.

К группе сталей нормальной производительности относятся вольфрамовые (Р18, Р12, Р9, Р9Ф5) и вольфрамомолибденовые (Р6М3, Р6М5). Теплостойкость до 600 о.

К группе сталей повышенной производительности относятся стали, содержащие кобальт и повышенное количество ванадия (Р6М5К5, Р9М4К8, Р9К5, Р9К10, Р10К5Ф5). Они превосходят стали первой группы по теплостойкости (630 0 –640 0), но уступают им по прочности и пластичности.

Механические свойства некоторых быстрорежущих сталей приведен в таблице 2.

Таблица 2

Марка стали температура нагрева при закалке, °С Твёрдость по­сле закалки, HRC
Быстрорежущие
Р18 1270+1290 62…65
Р12 1240+1260 62…65
Р6АМ5 (Р6М5) 1200+1300 62…65
Р14Ф4 Р9К5, Р9К10 Р9М4К8 1240+1260 63…66
1210+1235 1215+1235 63…66 63+66
Р8МЗК6С Р9М5К5 1200+1220 1200+1230 63…66 63…66

Маркировка

Быстрорежущие стали обозначают буквой «Р», после которой стоит число, указывающее содержание (основного легирующего элемента) вольфрама в процентах. Содержание ванадия до 2 % и хрома до 4 % (во всех сталях) в марке не указывается. Стали, легированные дополнительно молибденом, кобальтом или имеющие повышенное количество ванадия, содержат в марке буквы М, К, Ф и числа, показывающие их содержание в %.

Например, Р10К5Ф5 – углерод в среднем 0,9–1,2 %, вольфрам 10 %, кобальт 5 %, ванадий 5 %.

Для устранения неоднородности структуры быстрорежущей стали применяют технологию порошковой металлургии. Эти стали (Р6М5Ф3 – МП; Р12МФ5 – МП и др.) имеют повышенное содержание углерода (1,2–1,75%) и ванадия (2,3–3,7%). Буквы МП указывают, что инструмент изготовлен методом порошковой металлургии (что обеспечивает повышение его теплостойкости в 1,5 раза).

Применение

Быстрорежущие стали применяют для изготовления фасонных токарных резцов, сверл, фрез, протяжек, метчиков и др.

Таблица 3

Твердые сплавы

К твердым сплавам относятся материалы, состоящие из высокотвердых и тугоплавких карбидов вольфрама, титана, тантала, соединенных металлической связкой. Они предназначены для изготовления режущих инструментов.

Твердые сплавы изготавливают методом порошковой металлургии. Порошки карбидов смешивают с кобальтом, выполняющим роль связки, прессуют и спекают при 1400 0 –1550 0 С.

Твердые сплавы производят в виде пластин, которыми оснащают режущие части инструмента. Такие инструменты сочетают высокую твердость (74–76 НRC) с высокой теплостойкостью (800 0 –1000 0 С). По своим эксплуатационным свойствам они превосходят инструменты из быстрорежущих сталей и применяются для резания с высокими скоростями.

В зависимости от состава карбидной основы порошковые сплавы выпускают трех групп, таблица 4.

Первую группу (однокарбидную-вольфрамовую) составляют сплавы системы карбид–вольфрама–кобальт (WC–Co), теплостойкость до 800 0 С.

Вторую (двухкарбидную–титановольфрамовую) группу образуют системы ТС–WC–Cо. Сплавы отличаются более высокой, чем у сплавов первой группы, теплостойкостью (900 0 –1000 0 С).

Третью группу (трехкарбидную – титанотанталовольфрамовую) группу образуют системы Tic–TaC–WC–Co. От сплавов предыдущих групп они отличаются большей прочностью и сопротивляемостью вибрациям и выкрашиванию.

Таблица 4

Маркировка

Твердые сплавы маркируют:

Сплавы вольфрамовой группы ВК3, ВК6, ВК25. Цифры, стоящие после буквы К, означают содержание кобальта в %, остальное карбиды вольфрама.

Например, ВК 6 – кобальт 6 %, карбида вольфрама остальные 94 %.

Титановольфрамовой группы Т15К6, Т5К10. К – кобальт, Т – карбиды титана.

Например, Т5 К10 – кобальта 10 %, карбидов титана– 5 %, остальное – карбиды вольфрама – 85 %.

Титанотанталовольфрамовой группы ТТ7 К 12, ТТ8 К6.

Например, ТТ7 К12.

К – кобальта 12 %, ТТ7 – суммарное значение карбидов тантала и титана 7 %, остальное – карбиды вольфрама – 81 %.

Применение

Сплавы В3, ВК8 применяют для режущих инструментов (токарные резцы, сверла, фрезы) при обработке чугунов, медных сплавов, а также фарфора, керамики и др.

Сплавы ВК10, ВК15, обладающие (из-за повышенного содержания кобальта (10–15 %)) более высокой вязкостью используют для волочильных и буровых инструментов. Сплавы с высоким содержанием кобальта (ВК20, ВК25) применяют для изготовления штампового инструмента – пуансонов, матриц.

Сплавы второй группы Т15К6, Т30 К4 применяют для инструментов (фасонные резцы, фрезы, протяжки) высокоскоростного резания твердых сталей.

Сплавы третьей группы ТТ7К12, ТТ8К6 применяют для инструментов при наиболее тяжелых условиях резания (черновая обработка слитков, отливок, поковок).

Сверхтвердые сплавы

К сверхтвердым материалам относятся алмазы, твердость которых 10000 НV, тогда как быстрорежущей стали 1300 HV и в шесть раз превосходят твердость карбида вольфрама.

Применение имеют синтетические алмазы. Нитрид BN – называемый кубическим нитридом бора. В зависимости от технологии его выпускают под названием – эльбор, эльбор – Р, боразон.

По твердости BN – не уступает алмазу (9000HV), но значительно превосходит по теплостойкости (алмаз – 800 0 С, нитрид бора – 1200 0 С).

Применение

Алмазными инструментами (протяжки, фрезы, развертки) обрабатывают цветные сплавы, пластмассы, керамику, обеспечивая при этом низкую степень шероховатости поверхности.

Эльбор, баразон применяют для изготовления инструментов (разверток, шлифовальных кругов и др.) для закаленных, цементированных (труднообрабатываемых) сталей. При этом высокоскоростное точение (фасонными резцами) закаленных сталей заменяет процесс шлифования.

Маркировка

ХГ, ХВГ, 9ХС – маркируют аналогично легированным инструментальным сталям.

Применение

Плоские инструменты (скобы, линейки, шаблоны) изготавливают из сталей 15Х, 20Х, ХГ, ХВГ, 12ХН3А после химикотермической обработки – цементации.

Для изготовления микрометров, калибров и др. (сложной формы и большого размера) применяют азотируемую сталь 38Х2МЮА.

Маркировка

Маркировка осуществляется аналогично углеродистым и легированным инструментальным сталям.

Например: У12 – углеродистая инструментальная сталь, содержание цементита (в среднем) 1,25 %С. 6ХВ2С – углерода – 0,6 %, Х – хром 1 %, В – вольфрам 2 %, С – кремний 1 %.

Применение

Низколегированные стали Х, 9ХС, ХВГ, ХВСГ так же, как и углеродистые У10, У11, У12, используют для вытяжных и высадочных штампов, которые работают при небольших ударных нагрузках.

Высокохромистые стали Х12, Х12М, Х12Ф1 применяют для изготовления крупных инструментов сложной формы: вырубных, обрезных, чеканочных штампов повышенной точности, калибровочных досок, накатных роликов и др.

Стали Х6ВФ, 6ХВ2С – обладающие повышенной вязкостью – используют для инструментов, подвергающихся ударам (зубила, гибочные штампы, обжимные матрицы).

Механические свойства сталей для инструментов холодной обработки давлением представлены в таблице 5.

Таблица 5

Марка ста­ли Закалка Отпуск
температура, “С твёрдость, НКС (не менее) температура, °С твёрдость НКС
4ХС 880…890 240…270 51…52
6ХС 840…860 240…270 52…53
4ХВ2С 860…900 240…270 50…52
5ХВ2С 860…900 240…270 420…440 51…53 45…47
6ХВ2С 860…900 240…270 420…440 53…55 46…48

Таблица 6

Применение

Стали 5ХНМ, 5ХНВ применяют для изготовления молотовых штампов.

Стали 5ХГМ и 5ХНВС предназначены для изготовления средних штампов или более крупных простой формы (5ХНВС).

1 2 3 4 5

1. Х12 1. У12А 1. ТТ12К8 1. 15Х 1. 5ХНВ

2. 5ХНМ 2. Т15К8 2. Р6М5Ф3-МП 2. ВК25 2. Т15К6

3. Р18 3. ВК8 3. ХВСГ 3. 3Х2В8Ф 3. У12

4. Р5М9 4. 9ХС 4. У13А 4. У10А 4. 4Х5В5МФ

5. ХВГ 5. У8 5. 9ХС 5. Х12М5. Р5М9

6 7 8 9 10

1. Х12 1. Х12Ф1 1. Х6ВФ 1. ВК25 1. У12

2. ТТ7К8 2. Р9 2. У13А 2. 20Х 2. Р18К3Ф2

3. Р18 3. 3Х2В8Ю 3. ХВСГ 3. 9ХС 3. 5ХНМ

4. 4Х2В5Ф 4. У8 4. Р6М5 4. У10А 4. ТТ12К8

5. У7А 5. ВК6 5. Т30К4 5. Р9 5. 4Х5В2ФС

11 12 13 14 15

1. Х6ВФ 1. Р9 1. У13А 1. ХВСГ 1. 9ХС

2. УТА 2. Х12Ф1 2. ХВ4 2. У10 2. Т15К8

3. Р9М5 3. У10А 3. ХВСГ 3. Р5М9 3. У13А

4. Т15К8 4. ВК25 4. Р9 4. ТТ12К6 4. ХВГ

5. Х5В2ФС 5. 3Х2В8Ф 5. ТТ12К8 5. 3Х2В5М3Ф 5. ВК20

16 17 18 19 20

1. У12А 1. Х 1. ХВСГ 1. 48 1. ХВГ

2. ХВГ 2. У9А 2. Р18 2. Р9М5 2. ВК25

3. Р5М9 3. ВК20 3. ТТ12К8 3. Т15К8 3. У10А

4. 9ХС 4. 9ХС 4. У13А 4. 9ХС 4. Р9М5

5. ВК10 5. 6М5Ф3-МП 5.9ХС 5. ХВГ 5. 4Х5В2С

Лабораторная работа № 9

«Классификация, маркировка, свойства и

применение инструментальных материалов»

Цель работы

Изучение классификации, маркировки инструментальных материалов их свойств и областей применения. Привить навыки оценки свойств инструментальных материалов, а также подбора материалов для проектируемых деталей.

Теоретический материал

© 2024 4septic.ru - Ливневая канализация, выгребная яма, трубы, сантехника