Расчёт металлической балки онлайн (калькулятор). Сбор нагрузок на фундамент или сколько весит мой дом Как рассчитывается нагрузка

Расчёт металлической балки онлайн (калькулятор). Сбор нагрузок на фундамент или сколько весит мой дом Как рассчитывается нагрузка

18.10.2020

1. Сбор нагрузок

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

  • собственный вес металлической балки;
  • собственный вес перекрытия и т.д.;
  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние). Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности. В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль. Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м. означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм. Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.

Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.

Это правило относиться и к выбору кабеля для электродвигателей.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 - 2500 9,0 – 11,4
Морозильники, холодильники 140 - 300 0,6 – 1,4
Мясорубка с электроприводом 1100 - 1200 5,0 - 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 - 1200 3,0 – 5,5
Соковыжималка 240 - 360 1,1 – 1,6
Тостер 640 - 1100 2,9 - 5,0
Миксер 250 - 400 1,1 – 1,8
Фен 400 - 1600 1,8 – 7,3
Утюг 900 - 1700 4,1 – 7,7
Пылесос 680 - 1400 3,1 – 6,4
Вентилятор 250 - 400 1,0 – 1,8
Телевизор 125 - 180 0,6 – 0,8
Радиоаппаратура 70 - 100 0,3 – 0,5
Приборы освещения 20 - 100 0,1 – 0,4

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250
0,75 0,98 10 3800
1,00 1,13 14 5300
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Определяется как максимальная мощность, иными словами максимальная из средних значений полной мощности (Sм) за получасовой промежуток времени. Расчетная или позволяет определить достаточность сечений питающих электролиний, учитывая нагрев и плотность тока, выбрать мощность трансформаторов, выявить потери мощности и перебои с напряжением в сети. Для вычисления расчетной нагрузки необходимо предварительно изучить основные понятия и коэффициенты.

Так, для расчета максимальной нагрузки необходимы средняя активная нагрузка (Рсм) и средняя реактивная нагрузка (Qсм) за загруженную максимально смену, а для определения потери электроэнергии за год - среднегодовые нагрузки активной (Рсг) и реактивной (Qсг) энергии. На практике, для расчета средней нагрузки активной и реактивной энергии соотносят величину потребления соответствующей энергии по показаниям счетчика за определенный промежуток времени (как правило, за время смены) к этому интервалу времени.

Существует понятие максимальной кратковременной или пиковой нагрузки (Iпик) - периодически возникающая нагрузка, необходимая для проверки и защиты сетей, определения колебаний напряжения.

  • Коэффициент использования установленной активной мощности (Ки). Он определяется как соотношение средней активной мощности одинаковых по режиму работы приемников (Рсм) к установленной мощности этих электроприемников (Ру). В свою очередь, установленная мощность электроприемника продолжительного режима работы определяется по паспорту, а приемника кратковременного режима - приводится к длительному режиму. Для группы приемников общая установленная активная мощность определяется суммированием активных мощностей всех приемников. Стоит отметить, что для группы разнородных приемников коэффициент Ки равен отношению суммарной средней мощности (Рсм) к суммарной установленной мощности (Ру).
  • Коэффициент максимума активной мощности (Км). Рассчитывается как отношение расчетной активной мощности (Рм) к среднему ее значению за смену или год (Рсм или Рсг соответственно). На рисунке раскрывается зависимость этого коэффициента от эффективного числа приемников при разных коэффициентах использования.

Значение К м при К и

  • Коэффициент нагрузки (Кн) показывает, что для суточных и годовых графиков нагрузка неравномерная. Его величина обратно пропорциональна величине предыдущего коэффициента.
  • Коэффициент спроса активной мощности (Кс) показывает, смогут ли работать одновременно все потребители, и рассчитывается как отношение расчетной нагрузки (Рм) к установленной мощности всех приемников (Ру). Ниже в таблице можно увидеть значения данного коэффициента.

Электроприемники

Металлорежущие станки мелкосерийного производства: мелкие токарные, строгальные, долбежные, фрезерные, сверлильные,
карусельные, точильные и т.п.

То же, но крупносерийного производства

Штамповочные прессы, автоматы, револьверные, обдирочные, зубофрезерные, а также крупные токарные, строгальные фрезерные,
карусельные и расточные станки

Приводы молотов, ковочных машин, волочильных станов, бегунов, очистных барабанов

Многоподшипниковые автоматы для изготовления деталей из прутков

Автоматические поточные линии обработки металлов

Переносной электроинструмент

Насосы, компрессоры, двигатель-генераторы

Эксгаустеры, вентиляторы

Элеваторы, транспортеры, шнеки, конвейеры несблокированные

То же, сблокированные

Краны, тельферы при ПВ = 25%

То же при ПВ = 40%

Сварочные трансформаторы дуговой сварки

Сварочные машины шовные

То же стыковые и точечные

Сварочные автоматы

Однопостовые сварочные двигатель-генераторы

Многопостовые сварочные двигатель-генераторы

Печи сопротивления с непрерывной автоматической загрузкой изделий, сушильные шкафы

То же, с периодической загрузкой

Мелкие нагревательные приборы

Индукционные печи низкой частоты

Двигатель-генераторы индукционных печей высокой частоты

Ламповые генераторы индукционных печей

  • Коэффициент включения (Кв). Для одного приемника он определяется отношением продолжительностью его работы за определенный интервал времени (Тв) к продолжительности этого интервала (Tц). Коэффициент для группы электроприемников определяется делением средней за исследуемый интервал времени включенной активной мощности по группе на установленную мощность группы.
  • Коэффициент загрузки приемника по активной мощности (Кз). По аналогии с предыдущим коэффициентом, на него также влияет продолжительность работы приемника. Рассчитывается он путем деления средней активной мощности за период работы в определенный промежуток времени (Рс) на его номинальную мощность (Рн). Коэффициент по группе определяется соотношением вышеупомянутых коэффициентов Ки и Кв. При невозможности расчета коэффициента загрузки принимаются их нормативные значения: 0,9 - приемники с продолжительным режимом работы, 0,75 - с повторно-кратковременным режимом.
  • Коэффициент сменности по использованию энергии (α). Этот коэффициент, учитывая сезонность и прерывность загрузки, определяет годовой расход электроэнергии. В зависимости от вида деятельности предприятия примерные значения коэффициента могут варьировать от 0,65, что характерно для вспомогательных цехов в заводах черной металлургии до 0,95 - для алюминиевых заводов.
определяется при наличии данных по следующим величинам:

  • Сколько часов за год работает приемник с максимальной нагрузкой и потреблением электроэнергии , соответствующим графику нагрузки. Такая величина называется годовым числом часов использования максимума активной мощности (Тм) и зависит от количества смен и вида деятельности предприятия. Так, при работе в одну смену Тм может составлять от 1800 до 2500 часов, если работа двухсменная - до 4500 часов, при трехсменной работе - до 7000 часов;
  • Число часов работы предприятия за год (Тг) даст представление о годовом режиме использования электроэнергии. Зависит от количества смен, а также их длительности;
  • Значение эффективного числа приемников дает возможность заменить группу разных по режиму работы приемников группой однородных. На рисунке отражены кривые, определяющие эффективное число электроприемников.

Так как же определить расчетную нагрузку? Для расчета нагрузок наиболее точным является метод упорядоченных диаграмм. Имея данные о мощности каждого приемника, количестве и техназначении всех приемников, а также с помощью вышеизложенных коэффициентов и величин, рассмотрим порядок расчета по узлам питания:

  • Приемники делим на группы по их технологическому назначению;
  • По каждой группе вычисляем среднюю активную и реактивную мощности (Рсм и Qсм);
  • Определяем число приемников (n), суммарную установленную мощность (Ру), а также суммарные средние реактивной и активной мощностей;
  • Рассчитываем коэффициент использования по группе (Ки);
  • Определяем эффективное число электроприемников;
  • Используя вышеприведенную таблицу и рисунок, находим максимальный коэффициент;
  • Вычисляем расчетную активную мощность (Рм), а расчетная реактивная мощность (Qм) равна средней реактивной мощности (Qсм);
  • Находим расчетную полную мощность (Sм) и ток (Iм).

Работы в отделе кадров всегда много. Жаль, что не все руководители это понимают. Зачастую объективно оценить уровень нагрузки не удается ни администрации, ни самим кадровым работникам. Как подойти к этой непростой проблеме и не позволить взвалить на кадры дополнительные функции? Сколько работников целесообразно набрать в отдел кадров, если численность персонала увеличивается? Попробуем найти ответ на эти вопросы.

Первая же попытка найти норматив численности кадровиков отсылает нас к документу 1991 года «Межотраслевые нормативы времени на работы по укомплектованию и учету кадров». Эти нормативы ни разу не переиздавались, и хоть они до сих пор служат ориентиром для расчета нагрузки, явно устарели. Такие инструменты, как ПК на каждом рабочем месте, 1С и другое программное обеспечение, в 1991 году просто не могли быть учтены. Как же быть? Реальных путей решения задачи видится два.

Первый путь — нормирование труда

Это весьма трудоемкий процесс, но зато результат получится довольно точным и выраженным на языке цифр. А язык цифр руководители понимают хорошо. Итак, ?

  1. Выделяем основные рабочие процессы. Важно не брать в расчет задачу целиком, а разбить ее на составляющие. Например, прием на работу состоит из копирования документов, введения информации в систему, составления трудового договора, ознакомления работника с локальными актами и так далее.
  2. Определяем временные затраты на каждый процесс. Засекаем время, необходимое для получения требуемого результата работы. Время на выполнение каждой операции измеряется нормировщиком или лицом, которому поручено проведение нормирования.
  3. Находим примерное количество описанных процессов за месяц или год. Среднее количество приемов, переводов, увольнений, больничных листов и так далее.
  4. Умножаем численность операций на время их выполнения.

    Например, общее время, необходимое для оформления больничного листа, — 15 минут, среднее количество больничных в год — 50 штук. Итого: 15 х 50 = 750 минут, или 12,5 часов. Так поступаем по каждому направлению работы.

  5. Добавляем время на незапланированные трудозатраты — консультирование работников, составление списков и т. д. В этом случае исходим из реалий конкретной организации.
  6. Полученное общее время в часах делим на 8 и получаем количество дней, необходимых для выполнения работы.

Для наглядности приводим образец примерного расчета времени на прием нового сотрудника.

Применяя этот способ, учитывайте перерывы при работе на компьютере, совещания, поездки по служебным делам, отпуска и болезни работников отдела кадров.

Достоинства

Убедительная картина, наглядно показывающая количество задач, выполняемых отделом кадров, и их трудоемкость.

Недостатки

Невозможность точно спланировать объем будущей работы, из-за чего возникают погрешности. Разумно добавить к полученному результату дополнительное время на непредвиденные функции и форс-мажоры.

Второй путь — исходим из численности персонала

Этим способом пользуются чаще всего, так как вполне логично, что при увеличении численности штата нагрузка на отдел кадров возрастает. Но одной информации о количестве работников явно мало, следует определить перечень функций, возложенных на кадровиков. Нередко к их задачам относятся:

  • оформление полисов ДМС и сопутствующих документов.

Но даже и без этих дополнительных функций одного работника-кадровика обычно принимают на каждые 150-200 человек персонала. Это очень приблизительный расчет, так как не принимается во внимание текучесть и реальный объем обрабатываемых документов. Кроме того, специфика деятельности организации способна как уменьшать нагрузку, так и увеличивать ее. Предприятия с , где необходимы медосмотры, оформление дополнительных льгот, являются, конечно же, более сложными с точки зрения кадрового учета.

Как рассчитать текучесть кадров

Если вы решили отталкиваться от количества персонала, и этот способ вам кажется более простым и удобным, стоит все же рассчитать текучесть за прошедший период и сформулировать основные задачи.

Текучесть находится по простой формуле:

Кт = (Количество уволенных) х 100 / (Среднесп. Численность)

Пример:

За год в компании уволено 23 человека, среднесписочная численность равна 150 человек, расчет текучести:

Коэффициент текучести = 23 х 100 / 150 = 15,33.

Норма текучести зависит от сферы деятельности организации, материальной стабильности, сезонности и политики руководства. В целом коэффициент, равный 10-20 процентам, считается нормальным. Чем текучесть выше, тем больше нагрузка на кадровых работников, и если она значительно превышает средние показатели, это является поводом для увеличения численности отдела кадров.

Итак, для использования этого метода принимаем во внимание:

  1. Численность.
  2. Текучесть.
  3. Дополнительные функции.

При низкой текучести и небольшом количестве нагрузки в виде добавленных задач наличие одного кадрового работника на 150 человек видится достаточным.

Достоинства

Незначительные трудозатраты и возможность иметь временной запас человеко-часов для непредвиденных ситуаций.

Недостатки

Низкая точность и необходимость регулярно доказывать правильность расчета, т. к. наглядность результатов невысока.

Выскажите свое мнение о статье или задайте вопрос экспертам, чтобы получить ответ

Теория расчета электрических нагрузок , основы которой сформировалась в 1930е годы, ставила целью определить набор формул, дающих однозначное решение при заданных электроприемниках и графиках (показателях) электрических нагрузок. В целом практика показала ограниченность подхода «снизу вверх», опирающегося на исходные данные по отдельным электроприемникам и их группам. Эта теория сохраняет значение при расчете режимов работы небольшого числа электроприемников с известными данными, при сложении ограниченного числа графиков, при расчетах для 2УР.

В 1980-1990е гг. теория расчета электрических нагрузок все в большей степени придерживается неформализованных методов, в частности, комплексного метода расчета электрических нагрузок, элементы которого вошли в «Указания по расчету электрических нагрузок систем электроснабжения» (РТМ 36.18.32.0289). Вероятно, работа с информационными базами данных по электрическим и Технологическим показателям, кластеранализ и теория распознавания образов, построение вероятностных и ценологических распределений для экспертной и профессиональнологической оценки могут решить окончательно проблему расчета электрических нагрузок на всех уровнях системы электроснабжения и на всех стадиях принятия технического или инвестиционного решения.

Формализация расчета электрических нагрузок развивалась все годы в нескольких направлениях и привела к следующим методам:

  1. эмпирический (метод коэффициента спроса, двухчленных эмпирических выражений, удельного расхода электроэнергии и удельных плотностей нагрузки, технологического графика);
  2. упорядоченных диаграмм, трансформировавшийся в расчет по коэффициенту расчетной активной мощности;
  3. собственно статистический;
  4. вероятностного моделирования графиков нагрузки.

Метод коэффициента спроса

Метод коэффициента спроса наиболее прост, широко распространен, с него начался расчет нагрузок. Он заключается в использовании выражения (2.20): по известной (задаваемой) величине Ру и табличным значениям, приводимым в справочной литературе (примеры см. в табл. 2.1):


Величина Кс принимается одинаковой для электроприемников одной группы (работающих в одном режиме) независимо от числа и мощности отдельных приемников. Физический смысл - это доля суммы номинальных мощностей электроприемников, статистическиотражающая максимальный практически ожидаемый и встречающийся режим одновременной работы и загрузки некоторого неопределенного сочетания (реализации) установленных приемников.

Приводимые справочные данные по Кс и Кп соответствуют максимальному значению, а не математическому ожиданию. Суммирование максимальных значений, а не средних неизбежно завышает нагрузку. Если рассматривать любую группу ЭП современного электрического хозяйства (а не 1930- 1960х гг.), то становится очевидной условность понятия «однородная группа». Различия в значении коэффициента - 1:10 (до 1:100 и выше) - неизбежны и объясняются ценологически ми свойствами электрического хозяйства.

В табл. 2.2 приведены значения ЛГС, характеризующие насосы как группу. При углублении исследований KQ4 например только для насосов сырой воды, также может быть разброс 1:10.


Правильнее учиться оценивать Кс в целом по потребителю (участку, отделению, цеху). Полезно выполнять анализ расчетных и действительных величин для всех близких по технологии объектов одного и того же уровня системы электроснабжения, аналогичной табл. 1.2 и 1.3. Это позволит создать личный информационный банк и обеспечить точность расчетов. Метод удельного расхода электроэнергии применим для участков (установок) 2УР (второый, третий… Уровень Энергосистемы), отделений ЗУР и цехов 4УР, где технологическая продукция однородная и количественно меняется мало (увеличение выпуска снижает, как правило, удельные расходы электроэнергии Ауй).

Метод «максимальная мощность»

В реальных условиях продолжительная работа потребителя не означает постоянство нагрузки в точке ее присоединения на более высоком уровне системы электроснабжения. Как статистическая величина Луд, определяемая для какогото ранее выделенного объекта по электропотреблению А и объему Л/, есть некоторое усреднение на известном, чаще месячном или годовом, интервале. Поэтому применение формулы (2.30) дает не максимальную, а среднюю нагрузку. Для выбора трансформаторов ЗУР можно принять Рср = Рмах. В общем случае, особенно для 4УР (цеха), необходимо учитывать Кмах в качестве Т принимать действительное годовое (суточное) число часов работы производства с максимумом использования активной мощности.


Метод удельных плотностей нагрузок

Метод удельных плотностей нагрузок близок к предыдущему. Задается удельная мощность (плотность нагрузки) у и определяется площадь здания сооружения или участка, отделения, цеха (например, для машиностроительных и металлообрабатывающих цехов у = 0,12…0,25 кВт/м2; для кислородноконвертерных цехов у = = 0,16…0,32 кВт/м2). Нагрузка, превышающая 0,4 кВт/м2, возможна для некоторых участков, в частности, для тех, где имеются единичные электроприемники единичной мощности 1,0…30,0 МВт.

Метод технологического графика

Метод технологического графика опирается на график работы агрегата, линии или группы машин. Например, график работы дуговой сталеплавильной печи конкретизируется: указывается время расплавления (27…50 мин), время окисления (20…80 мин), число плавок, технологическая увязка с работой других сталеплавильных агрегатов. График позволяет определить общий расход электроэнергии за плавку, среднюю за цикл (с учетом времени до начала следующей плавки), и максимальную нагрузку для расчета питающей сети.

Метод упорядоченных диаграмм

Метод упорядоченных диаграмм, директивно применявшийся в 1960 - 1970е гг. для всех уровней системы электроснабжения и навсех стадиях проектирования, в 1980- 1990е гг. трансформировался в расчет нагрузок по коэффициенту расчетной активной мощности. При наличии данных о числе электроприемников, их мощности, режимах работы его рекомендуют применять для расчета элементов системы электроснабжения 2УР, ЗУР (провод, кабель, шинопровод, низковольтная аппаратура), питающих силовую нагрузку напряжением до 1 кВ (упрощенно для эффективного числа приемников всего цеха, т.е. для сети напряжением 6 - 10 кВ 4УР). Различие метода упорядоченных диаграмм и расчета по коэффициенту расчетной активной мощности заключается в замене коэффициента максимума,всегда понимаемого однозначно как отношение Рмах/Рср (2.16), коэффициентом расчетной активной мощности Ар. Порядок расчета для элемента узла следующий:

Составляется перечень (число) силовых электроприемников с указанием их номинальной PHOMi (установленной) мощности;

Определяется рабочая смена с наибольшим потреблением электроэнергии и согласовываются (с технологами и энергосистемой) характерные сутки;

Описываются особенности технологического процесса, влияющие на электропотребление, выделяются электроприемники с высокой неравномерностью нагрузки (они считаются подругому - по максимуму эффективной нагрузки);

Исключаются из расчета (перечня) электроприемники: а) малой мощности; б) резервные по условиям расчета электрических нагрузок; в) включаемые эпизодически;

Определяются группы т электроприемников, имеющих одинаковый тип (режим) работы;

Из этих групп выделяютсяуе подгруппы, имеющие одинаковую величину индивидуального коэффициента использования а:и/;

Выделяются электроприемники одинакового режима работы и определяется их средняя мощность;

Вычисляется средняя реактивная нагрузка;

Находится групповой коэффициент использования Кн активноймощности;

Рассчитывается эффективное число электроприемников в груп пе из п электроприемников:

где эффективное (приведенное) число электроприемников - это такое число однородных по режиму работы электроприемников одинаковой мощности, которое дает то же значение расчетного максимума Р, что и группа электроприемников, различных по мощности и режиму работы.

При числе электроприемнйков в группе четыре и более допускается принимать пэ равным п (действительному числу электроприемников) при условии, что отношение номинальной мощности наибольшего электроприемника Pmutm к номинальной мощности меньшего электроприемника Дом mm меньше трех. При определении значения п допускается исключать мелкие электроприемники, суммарная мощность которых не превышает 5 % от номинальной мощности всей группы;

По справочным данным и постоянной времени нагрева Т0 принимается величина расчетного коэффициента Кр;

Определяется расчетный максимум нагрузки:

Электрические нагрузки отдельных узлов системы электроснабжения в сетях напряжением выше 1 кВ (находящиеся на 4УР, 5УР) рекомендовалось определять аналогично с включением потерь в .

Результаты расчетов сводят в таблицу. Этим исчерпывается расчет нагрузок по коэффициенту расчетной активной мощности.

Расчетная максимальная нагрузка группы электроприемников Ртах может быть найдена упрощенно:

где Рном - групповая номинальная мощность (сумма номинальных мощностей, за исключением резервных по расчету электрических нагрузок); Рср.см ~ средняя активная мощность за наиболее загруженную смену.

Расчет по формуле (2.32) громоздок, труден для понимания и применения, а главное, он нередко дает двукратную (и более) ошибку. Негауссову случайность, неопределенность и неполноту исходной информации метод преодолевает допущениями: электроприемники одного названия имеют одинаковые коэффициенты, исключаются резервные двигатели по условиям электрических нагрузок, коэффициент использования считается независимым от числа электроприемников в группе, выделяются электроприемники с практически постоянным графиком нагрузки, исключаются из расчета наименьшие по мощности электроприемники. Метод не дифференцирован для различных уровней системы электроснабжения и для различных стадий выполнения (согласования) проекта. Расчетный коэффициент максимума Ктах активной мощности принимается стремящимся к единице при увеличении числа электроприемников (фактически это не так - статистика этого не подтверждает. Для отделения, где двигателей 300… 1000 шт., и цеха, где их до 6000 шт., коэффициент может составлять 1,2… 1,4). Внедрение рыночных отношений, ведущих к автоматизации, разнообразию выпуска продукции, перемещает электроприемники из группы в группу.

Статистическое определение ЯСр.см для действующих предприятий осложняется трудностью выбора наиболее загруженной смены (перенос начала работы разных категорий работников в пределах смены, четырехсменная работа и др.). Проявляется неопределенность при измерениях (наложение на административнотерриториальную структуру). Ограничения со стороны энергосистемы ведут к режимам, когда максимум нагрузки Ртгх встречается в одной смене, в то время как расход электроэнергии больше в другой смене. При определении Рр нужно отказаться от Рср.см исключив промежуточные расчеты.

Подробное рассмотрение недостатков метода вызвано необходимостью показать, что расчет электрических нагрузок, опирающийся на классические представления об электрической цепи и графиках нагрузки, теоретически не может обеспечить достаточную точность.

Статистические методы расчета электрических нагрузок устойчиво отстаиваются рядом специалистов. Методом учитывается, что даже для одной группы механизмов, работающих на данном участке производства, коэффициенты и показатели меняются в широких пределах. Например, коэффициент включения для неавтоматических однотипных металлорежущих станков меняется от 0,03 до 0,95, загрузки A3 - от 0,05 до 0,85.

Задача нахождения максимума функции Рр на некотором интервале времени осложняется тем, что от 2УР, ЗУР, 4УР питаются электроприемники и потребители с различным режимом работы. Статистический метод основывается на измерении нагрузок линий, питающих характерные группы электроприемников, без обращения к режиму работы отдельных электроприемников и числовым характеристикам индивидуальных графиков.

{xtypo_quote}Метод использует две интегральные характеристики: генеральную среднюю нагрузку PQp и генеральное среднее квадратичное отклонение, где дисперсия DP берется для того же интервала осреднения. {/xtypo_quote}

Максимум нагрузки определяется следующим образом:



Значение р принимается различным. В теории вероятности часто используется правило трех сигм: Ртах = Рср ± За, что при нормальном распределении соответствует предельной вероятности 0,9973. Вероятности превышения нагрузки на 0,5 % соответствует р = 2,5; для р = 1,65 обеспечивается 5%я вероятность ошибки.

Статистический метод является надежным методом изучения нагрузок действующего промышленного предприятия, обеспечивающим относительно верное значение заявляемого промышленным предприятием максимума нагрузки Pi(miiX) в часы прохождения максимума в энергосистеме. При этом приходится допускать гауссово распределение работы электроприемников (потребителей).

Метод вероятностного моделирования графиков нагрузки предполагает непосредственное изучение вероятностного характера последовательных случайных изменений суммарной нагрузки групп электроприемников во времени и основан на теории случайных процессов, с помощью которой получают автокорреляционную (формула (2.10)), взаимно корреляционную функции и другие параметры. Исследования графиков работы электроприемников большой единичной мощности, графиков работы цехов и предприятий обусловливают перспективность метода управления режимами электропотребления и выравнивания графиков.

© 2024 4septic.ru - Ливневая канализация, выгребная яма, трубы, сантехника